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ABSTRACT 9
o
7
A study is made of plane gas dynamic and transverse

magnetogasdynamic shock waves in fully ionized hydrogen, at
conditions such that radiative processes are significant. An
established steady state flow is found to exist for these
waves only in astrophysical cases, since the wave thicknesses
in such a flow are quite large. In the case of such an es-
tablished flow the Rankine-Hugoniot jump equation (i.e., the
relationship between the flow variables in the initial and
final states) is analyzed and then solved numerically. It is
shown that of the twelve roots of this equation only two are
physical, corresponding to the supersonic initial and subsonic
final states. The differential equations which describe the
above shock waves are analyzed. The result is a set of four
simultaneous nonlinear ordinary first order differential equa-
tions, the solution of which gives the structure of the shock,
i.e., the dependence of the flow variables on position within
he shock wave. The structure equations are solved numerically
for cases where the shock is optically thick, i.e., the mean
free path for absorption of radiation is much smaller than the
characteristic lengths for change of the flow variables. This
is called the Eddington or diffusive approximation. A new

criterion is given for the validity of this approximation in




terms of the shock itself, independent of the properties of
the atmosphere. Numerical results of radiative shock struc-

ture in this approximation are given,
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CHAPTER I

INTRODUCTION AND HISTORICAL SURVEY

In this paper gas dynamic and transverse magnetohydro-
dynamic shocks in fully ionized hydrogen are studied, under
the following assumptions:

(1) The shock is plane and infinite;

(2) Continuum theory (the MHD equations) can be used;
| (3) Radiative energy content and radiative transfer

have significant effect on the phenomena;

(4) A steady flow is established in the sense that a
"shock frame" (a frame of reference, moving with
the shock velocity, in which all time derivatives
are zero) exists;

(5) The gas can be considered ideal;

(6) Radiation intensity is attenuated in the gas by
absorption rather than by scattering;

(7) The atmosphere is in "local thermodynamic equili-
brium," i.e., Kirchoff's law of radiation
applies.

The differential equations resulting from the above seven

assumptions are considered at their equilibrium points, and
the resulting "jump equation” is analyzed and solved numeri-

cally to find the states upstream and downstream of the shock.




It is shown that the jump equation, although generally of
twelfth degree, has only two physical solutions, correspond-
ing to the pre-shock and post-shock states. Numerical re-
sults are presented showing the temperature, pressure and
density ratios across the shock as functions of two dimen-
sionless shock parameters.

The solution of the differential equations themselves
requires two additional assumptions, namely:

(8) The angular dependence of the radition field is
such that the radiative intensity can be adequately
represented by the first two terms of a Fourier
series in the Legendre polynomials.

(9) The radiative mean free path is smaller than the
characteristic distances in which all the £fluid
properties vary.

With these additional assumptions a numerical integra-
tion of the shock differential equations can be performed in
the gas dynamic case. However, assumptions 8 and 9, along
with assumption 4, restrict the validity of the solution to
a certain limited range of physical conditions. The charac-
teristic length for change in temperature in the specific
cases considered varies from about 10 miles to about .05 light
years, so that the assumption of established fiow, which de-

pends on the shock thickness being considerably smaller than




the characteristic length of the physical environment, can-
not hold in any laboratory generated shock, and probably not
under any planetary conditions. The results may, however,
have astrophysical as well as theoretical interest.

Assumption 9, which leads to the "Eddington Approxima-
tion," further restricts the limits of applicability of the
present solution to a certain range of values of initial shock
conditions. A criterion is proposed for the validity of as-
sumption 9, and for certain cases where it does hold the
numerical solutions to the differential equations are pre-
sented.

Of the other assumptions, only number 6, that of an
absorptive atmosphere, is at all restrictive, in that it sets
an upper limit of about 107° K to the temperatures that can
be considered. There is much controversy as to the validity
of assumption 2, the use of the continuum model, in gas dynamic
shock structure theory. However, there is some experimental
evidence (Ref. 1) which tends to support the use of this
model, Furthermore, continuum theory is at least self-
consistent in the present problem, since the shocks are at
least several mean free paths in thickness.

The first derivations of the juhp conditions across a
gas dynamic shock wave were made by Rankine (Ref. 2) and
Hugoniot (Ref. 3), the latter derivation also showing that

the shock equations had only two equilibrium points, corre-



sponding to the upstream and downstream states. The problem
of the solution of the gas dynamic shock structure equations,
which are in their general form a pair of simultaneous first
order nonlinear differential equations, was also first under-
taken by Rankine in his original paper. In this work, the
problem was reduced to a pair of equations, one algebraic and
the other differential, by considering the gas to be inviscid
with finite thermal conductivity. Rayleigh (Ref. 4) showed
that this reduction of the order of the equations was support-
able only for sufficiently weak shocks, and performed a simi-
lar reduction considering zero thermal conductivity and finite
viscosity, finding no such restriction in that case. The prob-
lem of gas dynamic shock wave structure with finite viscosity
and finite thermal conductivity was first undertaken by Becker
(Ref. 5), and was considered in its most general form by
Gilbarg and Paolucci (Refs. 6 and 7). Reference 7 also con-
tains a strong argument for the use of continuum theory in
shock structure problems, Other authors, notably Wang Chang
(Ref. 8), Mott Smith (Ref. 9), Zoller (Ref.10) and Grad (Ref.
11) have undertaken the solution of the problem by direct appli-
cation of the Boltzmann equation, holding that the continuum
results are a poor first approximation of the real solution.
When the fluid is electrically conducting and subjected
to a magnetic field, in other words in the magnetogasdynamic

case, the problem of shock wave structure becomes much more




complicated. In its general form, four simultaneous first
order nonlinear differential equations must be integrated
between equilibrium points. When the normal component of
~the magnetic field is zero, i.e., for transverse shocks, the
number of equations is reduced to three. The problem of
magnetogasdynamic shock structure has been studied notably
by Marshall (Ref. 12), Burgers (Ref. 13) Ludford (Ref. 14),
Germain (Ref., 15) and Anderson (Ref. 16). In none of these
works, however, is a numerical integration of more than two
simultaneous equations attempted, the order of the problem
being reduced by the assumption that certain of the trans-
port coefficients are zero. The difficult problem of the
integration of more than two simultaneous first order dif-
ferential equations between their equilibrium points is dis-
cussed theoretically in Refs. 16 and 17. The jump equation
for transverse MHD shocks, although more complicated than
the gasdynamic Rankine-Hugoniot equation, is not overly dif-
ficult to solve (Refs. 18 and 19).

It is shown in Ref. 20 that in considering the equation
of state of an ionized gas there are many common cases in
which radiation effects cannot be ignored. The shock struc-
ture and jump equations for these caées must thus be modified
to include radiative energy storage and radiative transfer.
The jump equations for radiative shocks were first discussed

in the special case of very strong shocks by Sachs (Ref. 21),



and in the case of non-established flow (when assumption b
does not hold) by Guess and Sen (Ref. 22). A study of the
jump equations for established flow with transverse magnetic
field was made by Pai and Speth (Ref. 23). In the present
paper, this jump equation is analyzed further, and certain
general theorems are proven. It is shown that there exists
only two physical solutions to the equation, and the approxi-
mate location of these roots is determined theoretically, so
that Newton's method can be used directly in the numerical
solutions of the jump equation. The weak shock and strong
shock approximations are also examined, the latter leading

to Sach's results. A discussion is contained which clarifies
the arguments in Refs., 21 and 23 as to the validity of the
established flow a ssumption.

The subject of radiative shock structure has been ex-
tensively studied since 1952, when Prokof'ev (Ref. 24) con-
sidered the case of established flow with zero viscosity and
zero thermal conductivity, i.e., '"radiation smoothing"” alone,
Prokof'ev's original work was corrected and expanded by
Zeldovitch (Ref. 25),Raizer (Ref. 26), Clarke (Ref. 27),
Heaslet and Baldwin (Ref., 28), and in the MHD case by Mitchner
and Vinokur (Ref. 29). The influence of radiation on shock
structure has been studied as a shock tube phenomenon, notably
in the non-established case by Pomerantz (Ref. 30) and Olfe

(Ref. 31). There is much recent work which, as in the present




paper, considers the problem of radiative shock structure with
viscous, heat conduction and radiation smoothing all present.
Chow (Ref. 32) considers shocks in a transparent atmosphere,
while Traugott (Ref. 33)and Scala and Sampson (Ref. 34%) give
results in both the thin (transparent) and thick (highly ab-
sorptive) cases. In the present paper, a complete solution
is given for shocks in optically thick atmospheres. A set of
equations is presented which is valid for all absorptive at-
mospheres. An important criterion is presented in terms of
dimensionless shock parameters as to when an atmosphere can
be considered thick with respect to a given shock, i.e., the
validity of the diffusive approximation is shown to be a func-
tion of the shock itself rather than of the various mean free

paths in the atmosphere.



CHAPTER II

PHYSICAL AND MATHEMATICAL FORMULATION OF THE PROBLEM

The importance of the radiative energy content of a gas
as compared to its thermal energy content can be roughly
gauged by the size of the parameter ¢ , defined as aT®/nk(=
55.6T3/n), where a is the Stefan-Boltzmann constant (7.67 X
107'° egs units), T is the temperature in ©°K, n is the
number of particles per cc, and k 1is Boltzmann's constant
(1.3804 x 107'°® erg/®°K). This parameter is the ratio of the
radiative energy per unit volume, aT*, to nkT, which is 2/3
of the thermal energy per unit volume in an ideal monatomic
gas., For a gas at equilibrium, a value of € = 3/2 implies
the equal importance of the two modes of energy storage, and
a value of € = 3 implies the equality of the thermodynamic
and radiation pressures. Thus, in writing the momentum equa-
tion for gases at states for which € 1is near or dgreater than
1, it is necessary to include a term representing the gradient
of radiation pressure, and the energy equation must contain
terms representing the flux of radiant energy and the con-
verted flow of radiant energy per unit volume.

Radiative processes can also be important in the direct
transfer of energy from one volume of fluid to another volume.

In this case, one must consider the relative size of the con-




ductive energy flux kCVT, where kc is the thermal conduc-
tivity, and the radiative energy flux ?. Since heat transfer
requires spatial variations in the properties of the gas,
nothing can be said a priori about the relative importance

of conductive and radiative transfer. The appropriate dif-
ferential equations must first be solved.

The problem to be considered here is that of a plane
infinite shock wave propagating into a fully ionized gas at
a given "upstream" state denoted by the subscript O. The
state behind the shock will be denoted by subscript 1. The
shock has a velocity 3 in the x direction and, because it
is plane, the fluid properties vary only with x., Radiative
energy storage and transfer are assumed to be important (see
Fig. 2.1).

In some aspects of this work (e.g., the "jump equations")
it adds very little to the complexity of the problem to con-
sider the presence of a magnetic field ﬁ in the y-z plane.
Since the gas is ionized and therefore conductive, an electric
field iL also in the y-z plane and perpendicular to ﬁ, may
be present also, The MHD approximation can be used in this
case.

A standard technique in shock structure problems is the

1

writing of all the equations in the "shock frame," i.e., a

_)
frame of reference moving with the shock (at velocity V) in
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which all time derivatives vanish. In fluid dynamic shocks,
for which there is only one characteristic velocity, it is
well established that such a frame exists. In this case, how-
ever, electromagnetic radiation, which has characteristic
speed c, is also considered, and there is a question as to
whether such a steady flow can ever be "established" in the
sense that there is a frame in which all time derivatives
vanish. In a shock tube, for instance, a visible glow from
the upstream fluid will definitely reach a downstream observer
before the shock front. Also, a portion of the energy from
such a glow will be lost to the gas. If the characteristic
length of the physical problem is considered to be infinite,
no such loss would occur.

It will be assumed that a sufficient condition for the
existence of a shock frame is that the radiation emitted by
an element of the gas is reabsorbed by another element of the
gas whose distance from the first element is not large com-
pared to the physical characteristic length. 1In such a case,
the radiative energy being transferred from hotter regions of
the gas to colder regions can be considered as being at the
same time convected along with the gas, in much the same way
as the heat transferred from molecule to molecule by conduc-

tion is carried along by the molecules in their flow.
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Assuming this to be the case, the fluid dynamic equations

pertinent to the one-dimensional problem can be written, in
the shock frame, as follows: (Refs. 7, 23)
Conservation of mass:
d
Ix(Pv) =0 (2.1)
Conservation of x-momentum:
dv 5| 1 4 d
PV 3x + a;(p +pr+ 3 nHZ - 3 n aﬁ) =0 (2.2)
Conservation of energy:
U ptp
a e S ry o, Q. 4 o dv . 4T _ ¢
pv dx(U+ 5 +E vVt ) + dx(EH 3 W ax kK ax t F) =0
(2.3)
where

p 1is the density of the gas

v is the velocity of the gas relative to the shock
p 1is the thermodynamic pressure

Pr is the radiation pressure, defined below

L is the permeability of the gas (mks)

H is the magnitude of the magnetic field (mks)

E is the magnitude of the electric field (mks )

n is the viscosity of the gas

U is the thermal energy density per unit mass




Ur is the radiation energy density per unit volume,

defined below
k. is the thermal conductivity of the gas
T is the absolute temperature
F is the flux of radiative energy, defined below.

Integration of equation 2.1 gives:
pV = m (2.4)

where m is a constant, called the mas-flow constant.

Integration and rearrangement of equation 2.2 gives:

1 4
mv+p+Pr+—uH2——3-'q

5 = P (2.5)

Q'Qa
% i<
]

where P is a constant, called the momentum-flow constant.

Integration and rearrangement of equation 2.3 gives:

2 2
- .r_nX——{- - }ﬂli_ - _d_T=
Pv + mU + vU_ 5—'F + EH 5 ke g5 = © (2.6)

where O is a constant, called the energy-flow constant.
An additional differential equation is provided by the

"combined Maxwell" equation of MHD:

A dH _ _E
o ax - vH n (2.7)

13
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where o is the electrical conductivity of the gas. The
electric field, being tangential, does not vary with x. Here
the magnetic field is in the z direction and the electric
field is in the y direction.

The equation of state of an ideal gas:

P=pRT ; U=C_T (2.8)

will be used since, according to Kelly (Ref, 35) equation 2.8
is valid when the number of particles within a Debye sphere
is much greater than 1. For a singly ionized gas with one

species this criterion is:
)471' 3
T;-nRD > 1

where, the Debye length:

[N

(2l=)

A Yrne=

D=

where e is the charge of an electron. This inequality re-

duces to

3
e =255 2.7 x 1077 (2.9)

which will always be true if radiation is significant, Accord-

ing to Ref., 20, the gas will not be degenerate if




€T-3/2 > 1.5 x 1072 (2.10)

Thus if € = 0.0l1, a small value of the radiation parameter,

2.8 will hold if T < 108.

15

The quantities P> Ui and F which appear in equations

2.5 and 2.6 make necessary the consideration of radiative
transfer phenomena in order to solve the problem presented.
The specific radiative intensity Iv(r; L, m, n; t) is
defined (Ref. 36) such that I,4dvdzdldt is the amount of
radiant energy in the frequency interval (v, v + dv) which
is transported across an element of area dI, in directions
confined to an element of solid angle dQ, during a time dt.
Here 4 1is the cosine of the angle which the direction con-
sidered makes with the outward normal to d2, and m and n
are the other two direction cosines. d3 is located at the
point ? in space (see Fig. 2.2). In one-dimensional prob-
lems such as the present one (called "plane stratified" prob-
lems in radiative transfer terminology) where the properties
of the atmosphere vary in the x direction only, Iv can be
considered a function of x, 4, ¢, t and v only, where ¢
is the azimuthal angle. Since in this problem all directions
in the shock plane are equivalent (i.e., the radiation is
axially symmetric) and it is assumed that a frame exists in
which all time derivatives vanish, Iv is a function of x,

£ and v only.
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FIG.

2.2




The radiative mass absorption coefficient of a substance,
Kv’ is defined, in the plane parallel case, such that, if
during its passage through a path length ds within the sub-
stance, a pencil of radiation of intensity IV is weakened

by an amount EIV, then:

61v = Kvavds

The "optical depth'" T, 1is defined such that:

drv = rvpdx
Thus:
Lva = Ivd'rv

Ev can be considered as consisting of two parts: xva,

the coefficient of true absorption, and xvs, the coefficient

of scattering. The scattering cross section OVS is related

to the mass-scattering coefficient xvs by

where m is the density of the substance divided by the
number of scattering centers per unit volume, i.e., the mass
per scattering center. In the case of a singly ionized gas,

for instance, the major scattering process for radiation of

17
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thermal wavelength is Thompson scattering from the electrons
(Ref. 37), but since xvs is a mass-scattering coefficient,
mg in this case is the mass of the ions.

The differential mass scattering coefficient dxvs can

be defined as:

S an?
ae © = x p(cos G)E;—

where © is the angle between the incident and scattered
radiation and p is the "phase function" normalized such

that
dat
Jp(cos 8)-— =1
the integration being performed over all directions of scat-

tered radiation.

The albedo, W of a gas is defined such that

wo is thus a measure of the fraction of the absorbed radia-

tion which will reappear as scattered radiation.




19

The radiative emission coefficient j  is defined (Ref.
36) such that an element of mass dm emits or scatters into
directions confined to an element of solid angle d{, in the
frequency interval (v, v + dv) and in time dt, an amount of

radiant energy given by
jvdmdﬂdvdt

The radiative source function Jv is defined as Jv = jv/kv.

Jv can be considered as being made up of two parts, emissive

and scattering:
J(t, L) =e Kk + = wof xv(u)p°(x,, Lr)ae

where: it is assumed that the atmosphere is plane stratified;
e, is the coefficient of true emission, defined similarly to
j,» but not including scattering; and p°(2, L!') is the phase
factor, now defined in terms of the direction cosines 4 and
4! of the scattered and incident radiation, respectively.

The integral represents the radiation in the frequency inter-
val, incident from all directions, which is scattered into
the spherical sector (4, £ + d1).

The equation of radiative transfer can be written (Ref. -

36) in terms of the above-defined quantities as:

4 st - Jv - Iv (2.11)
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The amount of radiant energy in the frequency interval

(v, v + dv) which is transferred across d% during time dt

is given by (Ref. 36)

avazdt 1,440

where the integration is over all solid angles. The net
radiative flux, i.e., the normal flow of radiant energy per

unit area per unit frequency interval per unit time, is thus:

F, = [1,4d0

or, in axially symmetric cases:

1

F, = o {1 &IvdL (2.12)

>
Fv is the x component of the vector F_ = [F , O, 0].

v v’

The radiative energy density, Urvdv, in the frequency
interval (v, v + dv) at any given point is (Ref. 36) the
amount of radiant energy per unit volume in that interval

which is in course of transit in the immediate neighborhood

of that point. In the axi-symmetric case:

1

_ 2n
= £1 Ivd& (2.13)




Finally, a radiative stress tensor can be defined, of

which, in this case, only the diagonal component Prys the
"radiation pressure," need be considered:
1
p. =2L [ 21 a1 (2.14)

Integrated radiative quantities are defined as the fre-

quency-dependent quantities integrated over v from O to w:

[+ o]
(7, 4) = [ I (7, L)av (2.15)
O
0 oo ev 1 o o
J=[Jd@a =[] Fdv+Fw | Jx,(e')p (4,4%)attav
o) o] v o -1
w0 e 1 1
= [ grav+ 35w, [ I(4)p°(2,41)aL! (2.16)
o v -1
[oo]
= [ x,dv (2.17)
O
[+
at = pdx [ x,dv = prdx (2.18)
(o]
© 1
F=[Fadv =2r [ I1dL (2.19)
o V -1
© [,
- e
U = {) u_,av = = {lIdL (2.20)

_ 2mn 2
p. = {)prvav = = {lc 1a¢ (2.21)
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Equation 2.11 can be integrated over frequency to give:

00 IV

X 1 - J -
o £ < Sg & =J9-1 (2.22)

If Kv is independent of frequency, or can be approxi-

mated by some mean, then the equation of transfer is:

oI _
tsr=9-1 (2.23)
where dtv = xpdx = %5 where L, is the "radiative mean
R

free path."

The relations thus far obtained, repeated here:

pv = m (2.24)
1
mv + p+ p.+ §'uH2 - % n %% =P (2.25)
mv 2 uvHZ atr _
Pv + mU + vU_ - —5— + F + EH - 55— - K. g% = @ (2.26)
A dH _ _E

0 ax vH m (2.27)
P=pRT ; U=CT (2.28)

1 o0
F=2n [ tat [ avI (2.29)

-1 o




23

21 Rt
U == {ld{, {, avr, (2.30)
1 [s ]
_2n 2
P, = {1 L dL£ dvI, (2.31)
aIv
s =9, - I, (2.32)
v

are a set of 10 equations in the 11 unknowns §p, v, p, H,

P> U, Ur’ F, T, Iv and JV with parameters m, P, Q and
E, and gas properties 1, kc’ R, CV, L, 0 and X, . One more
relation is needed for the solution of this set. This rela-
tion is available in equation 2.16, the definition of Jv as
soon as the gas to be considered and the range of physical
conditions are specified,

The gas to be studied in this work will be completely
ionized hydrogen, some of whose properties must now be ex-
amined. The specific heat ratio, 7y, is 5/3, and the specific
heat CV = R/y - 1. The gas constant R for a singly ionized
gas is 2N6k/A, where NO is Avogadro's number and A is the
atomic weight of the ions. In the case of ionized hydrogen,

R = 2N6k. Discussion of the transport properties 7, kc and
0 will be deferred until Chapter 5.' The radiative proper-

ties of hydrogen, which have been studied in some detail (Ref.
38), must, however, be considered at this point in order that

the appropriate approximation to equation 2.16 be found, and

the set of equations be completed.
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It will be assumed that the emissivity of the gas e,

is the same as that of a gas at "local thermodynamic equilib-

rium," i.e., that, following Kirchhoff's law:

v
— = B_(T)
'S
v v
where
2hy 2 1
B (T) =
Y C2 th/kT -1

is the Planck black body function, h being Planck's con-
stant. According to Ref. 39 this assumption is valid when-
ever the electron-electron collision frequency is much greater
than the frequency of recapture collisions between electrons
and ions, and this inequality is true for ionized hydrogen,
where the recapture process is H+ + e~ H+ hv. Thus local
thermodynamic equilibrium will hold. At the equilibrium
point of equation 2.11, IV = Jv’ so that the frequency de-
pendence of Iv can be assumed to be approximately the same
as that of Bv(T)’ having a peak at or near the Wien fre-
quency. For a fully ionized gas, the major scattering process
at thermal frequencies is Thompson scattering (Ref. 37), and

the major absorptive process is continuum (free-free) absorp-

tion. It will be assumed that the physical conditions are
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such that the albedo vy {{ 1. For this to hold true it is
sufficient that the mean free path for Thompson scattering

be much larger than that for bremstrahlung, i.e.,

S a
Ly 27 Ly

The cross section for Thompson scattering is 6.65 x 10~ 2° cm?®

(Ref. 37) and the mean free path is thus

s __1 1.502 x 102*
L = =k = (2.33

where n is the number of electrons per cc.
Menzel and Perkeris (Ref. 38) give the absorption co-
efficient per ionized hydrogen atom as:
a CPe hv /kT
(e - 1)g! (2.34)

g =
v VSTa 2

where Co is a constant equal to 2.67 X 102* in cgs units,
P is the electron pressure, and g' is a function of v

and T given by:

/
g' =1 - o.1728(§_’—)l 3(1 - %%l)
O

R being the Rydberg constant.
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The appropriate mean absorption coefficient for this

problem is the Rosseland mean (see Chapter V) defined as:

I g% B, (T)dv
O

& =
f la g% B, (T)dv
o

V

Using equation 2,34 for Gva:

P
- 3.32 x 1077 ;g%;[l - . 1098(7 57 To5)  Jem® (2.35)

(Ref. 38)

The electron pressure Pg is nekTe, where n, is the
number of electrons per cc and Te is the electron tempera-
ture. For fully ionized hydrogen ng is equal to n, the
number of ions per cc: n,=n; = n. It will be assumed that
the electron temperature is equal to the gas temperature T,
so that:

1/ 3
¢@ = 3.32 x 10~7 —%%;[1 - .1098(7 57 T os)  lem®  (2.36)
- )

The radiative mean free path for absorption is:




where m is the mass per absorber and n, is the number

of absorbers, in this case n,

cc, Then:

the number of electrons per

27

L = - (2.37)
no
L2 1 p7/2 1 cm
R ~ 3.32 X 10 'k n=2 . /3
1 - .lOQB(m)
2/ 2 .
= 2,18 x 1022 2;2— = 75 °m (2.38)
T

1 - .1098(7 57 % 10%) '

Thus, the albedo is much less than one if:

/2 24
2.18 x 1022 T;Z 1 / << 1.502 X 10
T 1/a n
or
/
T2 L << 68.8 (2.39)
n T 1/a
1 - .1098(7 57105
This can be expressed as:
et/ ! 75 << 3825
1 - .1098(7 7570 1o%)



28

Thus, for instance, for € = 1, the inequality 2.39 will
hold for T < 107°K, and for T = 10°°K, it will hold for
e <3, i.e., for n > 5 X lolg/cc. At lower temperatures,
2.39 is true for all reasonable number densities.

If the inequality 2.39 holds, the source function be-

comes:
J = B (T) (2.40)

or, integrated over frequency:

caT?
g = [B,(T)av = S

Equation 2.40 is the equation required to complete the
set.

It is convenient for the work that follows to condense
and non-dimensionalize the equations. The set can be re-
duced to four equations by substituting equations 2.24, 2.28,
2.29, 2.30, 2.31 and 2.40 into the rest. However, two of
these equations would be integro-differential, involving
integrals over 4 and v. It is thus convenient to retain
equations 2.29, 2.30 and 2.31 and to use as the reduced set
the following seven equations:

RT 1

d
m(v+—‘-’—)+pr+§ H2—§n§=P (2.42)




1
Pv+7—l—RT+vu—m‘2’+F+m-%H——kc%£=Q (2.43)
1 di_E
i - Ld_E (2.44)
axv
Lt s7-=B,(1) -1, (2.45)
v
© 1
F = 27rf av [ 4I,4t (2.46)
-1
1
=-2é—f av [ 1,40 (2.47)
c -1
o 1
- en 2
P_=%[ av flx,zvd:, (2.48)

These seven equations can be non-dimensionalized to give:

2
Lpg—(,’:=§+w+p; %XZ— (2.49)
LH%;O+2DU)U]': - 1)[(1—a>)2+1\]+Dx(2-—)‘z@-)+2B—D F! (2.50)
Lm%i- = wx - 2 (2.51)
o¢

(2.52)

Fr=L1) a [ teat =2 [ oot (2.53)
: .

29
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where:

N =

L= 1 . 1
> [ av | ¢,dt = 35 [ o¢ar
o) -1 -1
0 1 1
[ av [ t2.at =3 [ 13t
o} -1 v -
.\
- P
m2RT
e = )
-y
lerv
¢v =~ "cP
A-2gM_
P
E®m®
Zz—p._Ps
oy -1, 1 _ 5
D = "3 (= 3 for vy = 3)
P
P = tmc
Yrr P30
B,(8) = & B, (77

(2.54)

(2.55)




L
m

Equations 2.49 - 2.55

chapters.

|
Inx Wi+
=S

<o
3

_m_
Puo

will be studied in the following

31
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CHAPTER III

JUMP_EQUATIONS

An essential step in the solution of the shock structure
equations, and a study of much interest in itself, is the de-
termination of the "equilibrium points" of the equations,
i.e., those values of the variables for which all derivatives
are equal to zero, If the shock is considered as a transition
between equilibrium states of the gas, then the equilibrium
points will correspond to these states. In gas-dynamic shocks
two equilibrium points, corresponding to the "pre-shock' or
"ypstream" state and the "post-shock" or "qownstream" state
exist, and these states are found by solving the Rankine-
Hugoniot equations, It will be shown below that the equa-
tions of Chapter 2 also have two equilibrium points, and
numerical solutions to the equations corresponding to the
ordinary Rankine-Hugoniot solutions will also be given.

If all the derivatives in equations 2.49 - 2.55 are set

equal to zero, it is seen, first of all, that:
¢ = BQ(G) (3.1)

and thus is independent of 4. Then:

1

F' = 2 86 [ 2aL = 0 (3.2)
-1




ul = % s6* [ at = se* (3.3)

p! = 2804 [ t2at = % set (3.4)
1 3
Also:
%+m+%—se4+%xzi-1=o (3.5)
6 + 2DwS6* - D[(1 - )% + A] + Dx(2 - £2) = 0 (3.6)
wy -Z =0 (3.7)

Equations 3.5 to 3.7 can be combined into two:

o1 +1e)-o0(1-0 -32 (3.8)
6(1 + 2pe) =D[(1—w)2+A-fJ (3.9)
where ve = gwo® (3.10)

The parameter € is, in terms of the dimensional vari-
3

aT
PR ’
radiation energy to thermal energy of the gas.

ables, i.e., approximately the ratio of the equilibrium

Equations 3.8 and 3.9 (using the definition 3.10) can be

rearranged into:
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(f9)4=%[(l—w)(l—ga)) +A+%Z- EKG(D“) (3.11)

f6 - (1-aw)(7w-1) -a-2=_Eol (3.12)
where:

£(v) = 2(2=9) (3.13)

a(v) = T (3.14)

h(y) - 23 (3.15)

K = 3§—3 (3.16)

The functions of the specific heat ratio Y in equations
3.13 to 3.15 have been left in functional form even though in
any physical situation to which they would apply, ¥ = 5/3.
Note that for < = 4/3, which is the specific heat ratio
for a photon gas (Ref. 40), the functions F(w) and G(w)
are identically equal, and a mathematically degenerate case

exists (see Appendix A).

£(y) = 3 (3.17)




g(y) = 4 (3.18)

h(y) = 3 (3.19)
and

K = 81/s (3.20)

For vy = 4/3

f(y) = 0 (3.21)

g(y) = 7 (3.22)

h(y) = 2 (3.23)
and

K=0 (3.24)

The polynomials F(w) and G(w), defined in equations

3.12 and 3.11, respectively, are:

Flw) = o(1 - w)(1 - 7Tw) + (Aw + 22) (3.25)

G(w) = w(l - w)(1 - gw) + (Aw + hz) (3.26)

For v = 4/3, F(o) = G(w).
Equations 3.11 and 3.12 can be combined into a single
polynomial equation in ®, which can be called the "jump

equation" for radiative shocks:

2
QL - 2 (3.27)

35
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In gas-dynamic shocks, the jump, or Rankine-Hugoniot

equation, one form of which is:

Go(w) = (1 -w(l-g0) +A=0 (3.28)
where A = 2%% - 1 as before, has solutions which depend on

only one parameter A (aside from the fluid property g). The
solutions of equation 3.27, on the other hand, depend on the
three parameters A, S and Z., The jump equation for MHD shocks
with the magnetic field in the plane of the shock can be
written with two parameters A and Z, and equation 3.27 with
H = 0 has two parameters A and S. Consideration of radiation
thus adds an extra parameter to the jump equation., There is
a simple reason for this: in ordinary gas dynamic shocks,
the ratios of the state variables across the shock are func-
tions of one dimensionless variable, say the initial Mach
number, alone, and independent of the level of temperature or
pressure. However, when radiation is considered, the tempera-
ture level, or, more exactly, the value of €, at the initial
and final states plays an important role in determining those
states. Therefore, a second parameter, corresponding to €
in a similar way to that in which A corresponds to the Mach
number, appears in the jump equation.

It can be shown (see Appendix A) that equation 3.27,
although of 12th degree, has only two physically possible

roots «° and ' (w® > w') which correspond to the pre- and
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post-shock states respectively. Figure 3.1 shows graphically

the location of these roots. Curve A is a plot of
y = o(1 - 0)(1 - 7o)

and curve B is a plot of
y = (1 - w)(1 - gw)

for g = 4(y = 5/3). The straight line C is drawn with inter-
cept y = - 22 and slope -arc tan A. The straight line D

has y intercept -hZ and the same slope. Line E has y inter-
cept O and the same slope. Referring to the figure, the pre-

shock state has:

while the post-shock state has

1 1 1
we o < o

When no magnetic field is present:

(PN
£
(o]
(P2
£
Hh O

w°
9

and

Ho!
PaN

ew
I\
&
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E; and Z%, are the solutions to the gas-dynamic jump
equation, 3.28. Summarizing the results of Appendix A as ex-
pressed in Fig. 3.1, the pre-shock w, w® 1lies between the
larger of the two positive roots of G(w) = 0 and the larger
of the two positive roots of F(w) = 0, while the post-shock
w, w", lies between the corresponding smaller roots., With

knowledge of the approximate location of the roots, it is a

simple matter to solve equation 3.27 numerically (see below).

Weak Shocks - Signal Speed

A weak shock can be defined as one in which the state
variables change by only a small amount across the shock. In
the limit, when the changes in the state variables can be
treated as infinitesmals, the shock becomes a sound wave,
i.e., a travelling small disturbance in the fluid. The veloc-
ity of weak shocks is thus, in this limit, the signal speed
in the fluid.

Define the state variables in the pre-shock state by
subscript O and those in the post-shock by subscript 1.

Assume that:

3
I

T (1 + t) (3.29)

and

V, = v (1 - v) (3.30)

39
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where t #nd v #&F& positive nhufibers; Beth &K i: Then;

Py = Pd(i + v) (3:31)
Hy = BJ(1+ 9) (3:38)

At statés O ahd 1 (where ail derivatives vanish):

P - mvt pRE + L art o B (3.33)

and
2 ’ g e S
0 = mg + 5 z T mRT + % vaTt + pve? (3.3%)

If equations 3.33 and 3.34 are written for states O and

1, and equations 3.29 to 3.32 are substituted, the results

are:
(t + v)pgRi, + % ta@g AR uﬁgv =0 (3:35)

~

B e me T E:_( ” v HBu
Bguations e;35 and 3:3é car b& re-WritteR &8§:

(L+deks (1=yi)v=0 (3:37)
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-~ _ =2 - ! = =
(F=T+Fet-(y +3¢€)v

where:

2

v2 - "o

1 ° Po

"Y =

RT0
ar3
€ O
PR
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(3.38)

(3.39)

(3.40)

Equations 3.37 and 3.38 are two simultaneous, homogeneous

linear equations, so that for t+ and v

solutions,

This gives:

(l+§€)2
Yy =1+ R
y-171 7€
and
1 + %ie
t = 1 v
y-1° he
so that:
: (1 + %‘6)2) HZ
v = RT (1 + +
© L _ 4 o4e Po

to have non-zero

the determinant of their coefficients should vanish.,

(3.41)

(3.42)
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The signal speed is:

v, = VY'RT_ + BH/P, (3.43)

where <y' 1is given by equation 3.41.

This value for signal speed can also be found by con-
sidering the jump equations as state equations and using the
results of MHD for the signal speed (see Appendix B).

The "Mach Number" for radiative shocks will be defined

as the ratio of the velocity to the signal speed:

v

M= (3.44)
VY'RT + uH®/p
in terms of the dimensionless variables,
1 _y'6  1Xx2
Wt sz (3.45)

Since the weak shock solution corresponds to MO = M, =
states which satisfy equation 3.27 with finite changes in

fluid properties will have

M >1
(3.46)
M <1

(see Fig. 3.2).




Strong Shocks

When the shock propagates at large Mach Number into a
gas at fairly low temperature, approximate results for the
post-shock state can be written in terms of the parameters

of the pre-shock state, Let

RT_
8 == (3.47)
(o]
aT3
€=€,°=73 ; (3.48)
o]
uH>
X = Xg = nov2 (3.49)

where it is assumed that ©, €, an x are all much less than
1 (in which case X, as defined in equation 3.49, is the same
as the x used previously). This assumption means that not
only is the kinetic energy of the fluid much larger than the
thermal or magnetic energy present, but the initial conditions
are such that the radiative energy is much less than the
thermal energy.

Then:

m= p_v, (3.50)
P - mvo[l + 5 +%x] (3.51)
Q = mv2(z + % 6 + X (3.52)
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and, to first order in €, 5 and X:

A=2_1-2.y (3.53)
o mv 1
W =5 = 1 -0 ) X (3-54)
mZRTo
0° = —5=z =0 (3.55)
P7
s = %gﬁz = é% (3.56)
_ E32m® _

The jump equation, 3.27, can now be solved for wl, as-
suming that ot = % + o where a 1is a lower order infini-
tesimal than b, € or X.

To lowest order, equation 3.27 becomes:

3 —
OO
QI 4 = 363f3 (3'58)
(2) a
7
_ 1 1/4 3 1/4
or R YOI (3.59)
1/4 3/4 3 1/4
o =i+ (3 () ) A (3.60)




Equation 3.59 is consistent with the assumption that a
is a lower order infinitesimal.

Solving equation 3.12,

_]_-_8_ 1/4 _6_?_ 1/4

gt = (7) (5) (3.61)
Also:
3 3/4 /4
e, = swer = 2287 (&) (3.62)
Pl Xl o} 1/a 3/4 53 1/4
FoT X Ter - T3 A0 TSN (3.63)
Py py® 18,27+ 1
i R R — (3.64)
Po PP 7(7 ) (ed)*/*
T, ¢t 18 /e
o s A (3.65)
15t 2 a s 1/a
LN L LA g - a(3)/+(]) RICHRR
1 W wt
or
3/4 3 1/4
M, = 315“ + 31/‘*(%) ORI (3.66)

all the above being given to lowest order, Note that the

s 1
limiting density ratio (7) and the limiting Mach number (-)

V8
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for finite € as © = 0 are the same as for gas dynamic
shocks with <y = 4/3.

The pressure ratio can be expressed in terms of the

P

density ratio X = W X as:
o
Py (7£)2/2 X
po = 1 1/3 ('7_}{)1/8 (3-67)
(3 €)

This agrees with the result of Sachs (Ref, 21):

pl x4/3 X-g 1/3
E; = ) 175(7—X) (3.68)
(g €)

to lowest order, since X =7+ ((a) and £ = (7-g) = X-g +

Ola).

Relationships Among the Constants - Inaccessible States

Equation 3.27 depends on three parameters (A, Z and s)
for a given gas. Specification of these three parameters
will give a unique pre-shock state and a unique post-shock
state. However, physically, the usual case is for the pre-
shock state to be given and the post-shock state to be un-
known. It is convenient to specify the pre-shock state in

terms of three parameters:




Mo’ the Mach number

€ the ratio of radiation to thermal energy, and

o’

€ho’ the ratio of magnetic to thermal energy

v2 v2
2 _ o N 0
M, = wH= = RT (! + € ) (3.69)
yIRT + —2O o‘''o o
o o Po
aTg
€y = poR (3.70)
WHZS
€ho = pRT_ (3.71)

Using the defining equations for A, Z and S:

a=-20_,

E®m?2
Z = =fs

ab”

ngI

along with equations 3.33 and 3.34, and the equilibrium rela-
tion E = quHo, the following expressions are obtained for

the parameters:
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' 1 i 2 _ 1 1 2
A 2(vp + ep ) (5T * €0 * 5 Cnolto T 1L+ 3 €5 * 5 Epo
1 1 ' 272
(1 + 3 %o + 5 €ho t (yo + ehO)Mo]
(3.72)
24
_ €ho[yc') + eho] Mo
Z - l l ' )M2 a (3'73)
(1 + 3 o + 5 €0t (yo + €0 o]
e [1+2c +2e  + (v + e )M2]7
s = —> 3 o 2 ho g ——ho o (3.74)
= ' L]
(yo + €hoTiMo
For Mo > », these reduce to:
2[—L— + 2+ €, ]
A = 'Yzl' - O )MEhO (3.75)
Yo €ho’ "0
€
ho .
zZ =) (3.76)
Zyé + eho)MO
s =c¢ (y' +e,_)°M° (3.77)

S gets very large as MO increases, provided €5 # 0.

For =
€o 6ho

for an ordinary gas-dynamic shock:

.2_:Ll M2 -1
_ 3yl o
A = (l T ,YMg)z (Ref. 41)

=0, Z2=8=0, and A assumes its value
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Relations 3.72 and 3.T74 apply to the final state as well,
and can be used to define states inaccessible from shocks.
From Fig, 3.1 it is clear that for A { -hZ there exists
no pre-shock state, since the line with slope -tan"'A and
intercept -hZ will intersect the cubic curves at points
@® > 1. Therefore, the condition that a "post-shock" state

1 be accessible from a pre-shock state is that

A ) -hZ
or
he, . [y! + e, .M}
1 hi 1 hi- 1 + 2(y} + € l)[—%f-+ €y + %ehl]Mz
[1+35e + %-ehl + (v] + ey )M5]3 ! hl7ty-1 1
> [1+-l3-€l+-%-€hl] (3.78)

which gives a relation among the three parameters Ml’ €
and €h1’ which must be satisfied for all accessible states.
When €1 = €p1 = 0, the relation reduces to the familiar

"strong shock" solution to the gas dynamic jump equation:
2 y -1
MP 0 Y5y (3.79)

The equality corresponding to relation 3.78 can be

treated as a cubic equation in Mi:
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6 4 2 _ =
agMy + aM] + a M - 2, (3.80)

!
O

with all a's greater than zero (for <y £ 2).
By Descartes! rule of signs, there is a real positive

root of 3.80, Mm®, such that, for given ¢ and € all
o

ho’

Mach numbers 1 ) M > Mm are accessible from pre-shock states.

Numerical Results

Equation 3.27 has been solved numerically for ionized

hydrogen with H = 0 and the following ranges of variables:

2 < < 50
0.1 e, 10 ;
also e =20 (radiation ignored)

and the results have been plotted in Figs. 3.2 to 3.7. Figure
3.2 is a plot of Ml Vs Mo’ and it is to be noted that for
€5 # 0, all curves approach Ml -+ as Mo increases, which

V8
satisfies equation 3.79 with <y = 4/3, while for €_ =0, M

1
approaches 1/4/5, which satisfies equation 3.79 with vy = 5/3.
Figure 3.3 is a plot of pl/po(= vo/vl) vs M_. Again, the
limiting value of density ratio with finite € is 7, which

is g(4/3), while, when radiation is ignored, the limit is

4, which is g(5/3).




Figure 3.4 is a plot of temperature ratio vs Mo’ from
which it is seen that consideration of radiation considerably
lowers the theoretical temperature ratio across the shock.
That the theoretical pressure ratio is also lowered when radi-
ation is taken into account is demonstrated by Fig. 3.5. How-
ever, Fig., 3.6 shows that the total (thermodynamic and radi-
ation) pressure ratio across the shock is largely independent
of €5 and is approximately equal to the thermodynamic pres-
sure ratio across a non-radiative shock., Figure 3.7 is a
plot of total pressure ratio divided by thermodynamic pres-
sure ratio, i.e., (1 +-% el)/(l + % eo) vs M, showing the
importance of radiation at Mach numbers above about 5, even

when the initial value of € is small.
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CHAPTER IV

THE MOMENT APPROXIMATION OF THE STRUCTURE EQUATIONS

The shock structure equations of Chapter II, repeated

here:

Lpg—%=%+w+pé+%xzi-l (4.1)

LH%: 6 + 2bwu! - D[(1 - @) + a] + Dx[2 - X +2B—DF'

(%.2)
L, By o (1.3)
o9

Lot 570 = BY(8) - ¢, (&.4)
1 (<)

Fto= 2 {1 aL £ ave, (4.5)
1 0

Ut = 2 {l a £ ave, (4.6)
1 00

pl =+ {1 124 {) ave, | (k.7)

are a set of integro-differential equations in three inde-

pendent variables, X, £ and v, the solution of which is
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quite difficult, The set can be changed into an infinite set
of ordinary differential equations with x the dependent
variable and v a parameter, which, through a mathematical
approximation, called the '"moment approximation" in radiative
transfer theory, can be reduced to a finite set (Ref., 42).
The change to ordinary differential equations comes from

the expansion of ¢v in a Fourier series in Legendre poly-

nomials:
=]
¢, (x, 4) = Z ¢ (x)P (L) (4.8)
n=o
where
n
P (4) = =2— 4-(x2 - )" (4.9)
2'n! at

is the n'th Legendre polynomial in 4., The formula for the

n'th coefficient ¢vn(x) is:

¢

vn

(0 = 8L 16, Wz, (VaL (4.10)

From the definition 4.9 it is clear that:

1= (L) (%.11)
L = Pl(t) (4,12)
12 - 2p (1) + S p,(1) (4.13)
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and, it is also true that

fl Pn(&)P (L)ad =
-1

where 6nm is the Kronecker delta, so that:

[e o]

y _ 1
Up = £ ¢vodv (4.15)
Pl = %{) 6,8V + —135—{) b, 53V (4.16)

Equation 4.4 can be changed from a single partial differ-

ential equation to an infinite number of ordinary differential

equations by multiplying both sides by each of the Legendre

polynomials in turn and integrating over

can first be rewritten as:

o0 co
—yn_ - -
LRV& > Ix Pn(&) = B&(G) z 9,

=0 n=o

If equation 4,17 is integrated over

result is:

da¢
1 vl _ -
3 LRv dx BJ(G) ¢vo

L. Equation 4.4

(x)p (%) (4.17)

n n

{4 from -1 to 1, the

(4,18)
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which is the zero'th moment of equation 4.,17. For the first

and succeeding moments it is convenient to use the recurrence

relationship:
_ _nt+l n
AP (1) = 241 Prer(t) + i1 Pooi (V) (%.19)
so that equation 4.17 becomes
© d¢ © d¢
L s vn-1 n P (L) + = vn+l n+l P (4
Rv n=1 dx 2n-1 n( ) n=o dx 2n+3 n( )
[v¢]
- BJ(Q) - nio ¢vn(x)Pn(&) (4.20)

The zero'th moment of equation 4.20 is equation 4.18.

The first moment is:

d¢ d¢
—vYo , 2 _v2 | _ _
LRV[: dx ' 5 Tax ] =" %1 (4.21)

The second moment is:

(4,22)

d¢ d¢
e vl 3 _"v3]_ _
LRv [3 dx + 7 dx ¢v2

The m'th moment (m # Q) is:

d¢ d¢
m ym-1 m+1 vl |
YRy [:Zm-l ax ' 2m3  dx ] = = by (4.23)
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E . : d(bvm+l
quation 4.23 can be solved directly for —ax  When

m 1is an even number, using equation 4.18., For instance,

from equations 4.18 and 4,22:

do
% Ly "Eia = - bt 2(¢vo - Bé(e)) (h.24)

In general, from equation 4.23:

mt1 dqbvm+l _ m dqbvm—l

Lpv 2m3 ~dx . - ~ ®ym T Zm-1 YRv " ax (4.25)

if m - 2 is substituted for m in equation 4.25, the re-

sult is:

Loomel Pymer . _ome2 . $fyme3 (4.26)
Rv 2m-1 dx - vm-2 2m-1 "Ry dx .

and 4.25 and 4.26 can be combined into:

L m+1 d(bvm-kl - - ¢ 4 _m ¢ L - m=-2 L d¢vm—3
Rv 2m+3 dx vm m-1 “vm-2 m-1 2m-5 "Ry dx

(4.27)

If this kind of substitution is carried out % m times, and
equation 4,18 is used in the last substitution, the result

is:

mld%mﬂ W@

Rv Zmr3 dx - " %vm T 2 Bk (Pymopk T

L
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where
m x X1 noj
B, = (-1)° I —"J_m-ej-l (4.29)
J=0
Thus, ¢ is determined, for m odd, by a differential

vm

equation involving all the even ¢vm’s with n < m, and 6.
Equation 4.23 cannot be solved directly when m is odd,
since ¢

is only given in terms of ¢v and ¢vm and

vm-1 m+1

no equation exists for ¢vo alone (equation 4.21 can be
solved for ¢ only in terms of ¢v2)‘ Thus, the set of
equations 4.23 is an infinite set, with each new moment equa-
tion introducing a new variable.

Sets of equations similar to 4.23 occur very frequently
in radiative transfer theory. A common way in which the in-
finite set is terminated is by assuming arbitrarily that
¢v2N = 0. The resulting equations are called the "N'th moment
approximation" (Ref. 42). It can be shown (Ref. 42) that the
N'th moment approximation is mathematically equivalent to the
N'th Gaussian quadrature of Chandrasekhar (Ref. 36). The
assumption that ¢V2N = 0 is thus a mathematical one, with
the accuracy in the numerical determination of ¢v:

2N-1
¢, = = o, (x)p (4) (4.30)

n
n=o0




o4

increasing as N increases. It is to be noted that if

yon = 05 Dy oNt 1 # 0 because of equation 4,23, and all ¢

of order n » 2N cannot be identically zero., However, there

vynt's

now exists a complete set of equations consisting of equation
4,28 for m odd, and another group of equations, to be deter-
mined below, for m even.

Taking equation 4.23 for m = 2N - 1 results in:

-1 99, on-
2N-1 veN-2 (4‘31)

Ly BN-3 —dax = ~ ®ven-1

and, for M= 2N - 3:

d¢ do
2N-3 “'v2N-4 = 2N-2 " "v2N-2 _ _
Lev GN—7 — ax T IN-3 ~ dx = = $,oN-3 (k.32)

Substituting equation 4.31 in equation 4,32:

d¢
oN-3 yoN=4 ON-2
N7 "Ry ax - - ®ven-3 * 2ol %vew-l (4.33)

For m any even number, if the above substitution is

carried out Eﬁgm - 1 times, the result is:
m
N-1-=
ae 2
mtl vm _ _ :
Zmtl “Rv Tdx Pymt1 kil Ck¢vm+2k+1 (%.34)
where
m k X m+2 j
¢y = (-1) E m+2j+1 (4.35)
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Thus ¢vm is determined, for m even, by a differential
equation involving all the odd ¢  ,, with 2N -1 > n > m,
Equation 4.1 and 4.2 can be rewritten, in view of eqgua-

tions 4.14% to 4,16, as:

do _ 8 1 2 1x2_
Lbax ot et 3 ¢ *+ 15 ¢, + 3 g 1 (4.36)
Ly 92 = 0 + 2Dwo, - D[(1-w)2 + A] + Dx(2 - &) + & ¢, (4.37)
where

¢ = f o) dv
o VO

©
=
I

00
[ ¢ .dv
o vl

o
¢2 £ ¢v2dv

Equations 4,28 and 4,34 represent a set of 2N ordinary
differential equations with v as a parameter. Equations
4,36 and 4.37, on the other hand, have the v dependence
removed, In general, in order for the moment approximation
equations 4.28 and 4.34% to be of value, their v dependence
must also be removed. This can be done by an appropriate
definition of a radiative (frequency) mean free path, e.g.,

the Rosseland Mean Free Path used in the diffusion approxima-
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tion (see Chapter V). Assuming that the mean free path Ly

has been determined, equations 4.28 and 4,34 become respec-

tively:
d¢ m/2
mt1 mtl m _ "
m
L m+1l Efm = - ¢ - N-;_z Cm¢ (4 )
R 2m+1l dx mt+1 oop  komE2k+l .39

where m is even, BE and CE are defined as before and

(o]

¢n =/ 0,3V (4.%0)
o)

The set of structure equations now consists, in the N'tH
moment approximation, of the following 2N + 3 equations:
4,36, 4,37, 4.3, the N equations represented by 4.38, and
the N equations represented by 4.39. There are 2N + 3
unknowns: w, 8, x and the 2N variables ¢o"'¢2N-l' In

particular, the equations for the first moment approximation

are:
dw _ 8 1 1 x®
Ppax g Te*t 30, +3 %T -1 (4.41)
a8 _ - ) 2 o X 2D
Ly gy = 6 + 2Dwo D[(1-w)2® + A] + Dx[2 71+ 3B ¢y

(4.42)




d
Iy ax = @ - 2

d¢

-9 _ _
lpax =~ %

d¢

1 1 _ 4 _
3 Ir dx = s6 %o

(4.43)

(4. 44)

(4.45)

It will be assumed henceforth that equations 4.41 - 4,45

are the correct structure equations. The physical assumption

introduced by consideration of the first moment approximation

alone is that the radiative intensity at any point in this

plane-stratified atmosphere can be approximated by the sum of

two terms, one isotropic and one representing forward (or

backward) radiation. For this problem, where the atmosphere .

is considerably hotter at x 2> « than it is at x =

3

there will be a tendency for much of the radiative intensity

to be in the backward direction so that,

since the second

Legendre polynomial P2 has a maximum value in directions

perpendicular to the axis equal to 1/2 of its value in the

forward and backward directions, the assumption that its

Fourier coefficient ¢2 is zero is a good one,

The method of solution of equations 4.41 - 4.45 is dis-

cussed in Appendix C and in Chapter V.
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CHAPTER V

THE SOLUTION OF THE SHOCK STRUCTURE EQUATIONS IN THE

DIFFUSION (EDDINGTON) APPROXIMATION

The radiative shock structure problem has now been re-
duced, in its simplest form, to the five equations 4.41 to
4,45, The solution of these equations is, however, still a
formidable problem, A further simplification can be obtained
if it is assumed that the radiative mean free path is small
compared to the characteristic lengths in which the variables
change. This leads to what is known in the literature of

‘ radiative transfer as the diffusion or Eddington approxima-

tion (Ref. 43).

The equations for ¢vl and ¢vo in the first moment

approximation are (see Chapter IV):

d<bvo
Lpy T3x 7~ % (5.1)
d¢
1 vl _ ;
3 Lry Tax = By(8) - 9y, (5.2)
If the derivatives of L are ignored, equation 5.2 can be

Rv

differentiated and equation 5.1 can be used to give:

d2¢
1 vl _ d
3 LRv2 ax2 ~ %1 = My ax B&(G) (5.3)
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¢vl can then be expanded in a series of powers in LRV:

_ 5 b (m)
¢vl - mil LRvd’vl (5.4)

provided L is a "small" parameter. The results of sub-

Rv
stituting 5.4 in 5.3 and equating the coefficients of equal

powers of LRV are:

¢ (m) _ O m even (5.5)

vl - .
(1) _ _ 4 g,

3

6y, = -1 Femy(0) (5.7)
(1) _ _ 1 @&

21 = 73K gkl B, (€) (5.8)

for all integers k.
The Eddington approximation consists of taking only the

first non-zero term of equation 5.4, i.e.,

d

= - Ly, & 81(0) (5.9)

¢v1

and is thus valid if and only if

R ORG-S NON (5.10)
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or in general

2k+1
| % LRv2k+l d2k+1 Bj(6) | < | é&'BJ(e) | (5.11)
X

3 d

2

2 d ,
a;g must be small in

Rv

absolute value for all values of frequency and at all points

In other words, the operator L

in the shock structure. The conditions for which the Eddington
approximation is valid will be discussed below. Assuming its

validity for the moment, then, from comparison of equations

5.9 and 5.1,

(e) (5.12)

so that, integrating over frequency,

¢, = s6* (5.13)
and
g - aé
¢; = - Ip 3% S6% = 4LRses e (5.14)

where L is the Rosseland mean free path defined by

R
. 4 "o BBV(T)
[ Tpy ax By(Wav [ g, 3y W
LR = ® 3 = 0 BBv(T) (5'15)

f Ix BV(T)dv [ —S7— v

o O




(Ref. 44), since

OB (T)
4 " dT
ax Bv(T) = 37— &

The equations of the Eddington approximation are thus:

2
LP%=%+0)+-§—SG‘+—%—X-Z——1 (5.16)
8 DLR de W
[LH + 3B s63] o= 0+ 2Dws6* - D[ (1-w)2 + A] + Dy[2 - %5]
(5.17)
Ly %ﬁ = wx - 2 (5.18)

For the purpose of simplicity the numerical solution of
these equations will be carried out for X = 2 = 0 (no
magnetic field) only. In that case, the effects of radiation

on a gas dynamic shock will be shown, and the equations are:

d ) 1 _

Ly ar =gt @+ 3586 -1=F(o 6) (5.19)

Ly %% - 6 + 2DwS6* - D[(1-w)2 + A] = G(w, 6) (5.20)
where

se® (5.21)
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Equations 5.21 and 5.22 can be written as a single equa-

tion in the ® - 6 plane (the "phase plane"):

a6 G
dw =% F (5.22)
LP
where /' = EE , a function of x. (5.23)

Examination of the formulas for the characteristic
lengths L, and L, shows that ' <K 1.
In Chapter 2, the characteristic length LP was de-

fined as:

_ ko
Marshall (Ref. 45) gives the following formula for the vis-

cosity of ionized hydrogen:

E/E; (kT)5/2 : )
= .2
EWACI >

where:

mH is the mass of the hydrogen ion

e is the electronic charge, and

¥ is a function given by:

21 3
y = Anl1 + 2HLXL0(F0)) (5.26)




Numerically:
s/ 2
n = 0.3823 x 107 ** T?l/ cgs
so that
_ 41 _ -14 Tl‘r’/2
LP =3Im = 0.5097 X 10 ™ cm

In Ref. 45 the following formula is given for the thermal

conductivity of ionized hydrogen:

o = 0,46k vp(Tok (1)%/2
¢ lGJ%IJE; ety

where m, is the mass of an electron. The "Prandtl number"

of gas is defined as

N =

bl
P~ Tk

For ionized hydrogen

so that:

N, = 0.4064 vm_/m  ~ 0.00945

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

73



T4

Now

rw =
W |

= T - 793 (5.32)

so that

T5/2

L. = 0.4042 x 107%2 O (5.33)

The function ¥ can be expressed in terms of T and v as:

¢ = 4n(1 + 0.9082 x 10 *® 2%3) (5.34)

Finally, in terms of the dimensionless variables w and 6:

Lp = 0.5097 x 107"* mszz/z ei{? cm (5.35)
L, = O.kok2 x 107*% meiz/g ei;2 cm (5.36)
¥ = 4n(l + 0.9082 x 10 *% 55%5 w6 ?3) (5.37)
¥ = 4n(1 + 0.118 Re) (5.38)

and from equation 2.38 the Rosseland radiative mean free path:

S 2 7/2
L - 0.60 x 10725 —EB @0
R m11R7/2 17

(5.39)




where P, m and R are as defined in Chapter II, and

¥' =1 - 0.00203 ——5—2-/%— 2/ (5.%0)
v agl/a
Formula 5.39 holds only for ¢' > O, or
T { 10° °K (5.41)
The ratio of Lp to LP
;%.: 10”11 E§% w26 i%- (5.42)

is, for the region of interest, between 10 and 10'° (see

Appendix D), and, from equations 5.21, LQ » Lg, since B(~'§)

appears in the denominator in the second term. Thus:

IOL-‘ |’Ut'

6!

K1 (5.43)

The basic features of the shock structure problem will

not be affected if it is assumed that LP’ LQ and LR are

constant. Reasonable values for these constants are:

Lp = (Lpglpy) )/ (5.4%)
EQ = (L Qo™ Ql)l/a (5.45)
Eﬁ = (L Ro™ Rl)l/a (5.46)
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where the subscript O applies to the pre-shock state and the
subscript 1 applies to the post-shock state, If 5(<< 1) is

defined as

L
5= —
L
Q
Equation 5.22 can be written
a6 G
aw =0 F (5-47)

It can now be shown that the Eddington approximation is
valid if, at all points along the shock curve W = w(x),

6 = 8(x),

| F(w, 6) | <O1(0) (5.48)

and

| T, Selw, 0) | < OC0) (5.49)

First, since LR is the mean of the LRV’

cording to equation 5.15 in terms of a smooth function of v,

defined ac-

it can be assumed that if

| T | <1 (5.50)




7

then | LRv dx | < | for all v, i.e., if 5.50 holds, the
Eddington approximation is valid. The operator é% can be
written
_ (dw 9 de o )
dx% dx 06
or, according to equations 5.19 and 5.20
4 _(E 9,6 0
dx (f' o T T 35)
P Q
then 5.50 can be written
GG FG
= 2 G2 32  2FGc 0% FZ2 92 6 w9 , 1 dF 9
LR 132562"'_5_1_‘ awae 1.2 §w2+('ﬁg+ff)ae+f dax I<<1
Q PTQ P Q PTQ P
(5.51)
where
_ oG
Ge—é_é’etc
or
T 2 2 L
R > O 2FG d2 F2 3 ., Q4dF
=2 | 6% 567 * "5 Swd6 —25"‘+(GG * 6)’5'é+ 3 rs | K1
Q
(5.52)

T 2
Now ._R2:=C?(Ba) {£ 1, so that if the terms multiplying this

quantity are of order 1, inequality 5.52 holds. In the region

of interest, G 1is at most of order 1 along the shock curve
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(see Appendix D), and if the functions operated on (e.g., F,
G) are themselves of at most order 1, and are sufficiently
smooth, the partial derivatives are at most of order 1. Then
if 5.48 and 5.49 hold, 5.50 must hold, and the Eddington ap-
proximation is wvalid.

An equivalent statement of equation 5.48 is

Ly Kty (5.53)

where tw is the shock thickness with respect to the dimen-
sionless velocity .

The shock thickness with respect to a particular variable
Y, ty, is defined in the following manner: Let the variable
y have pre-shock and post-shock values (obtained from the
solution of the jump equations) Yo and Yys respectively.

If vy, #¥yo

lyo-vq |

t = mo—— .54
y = @ (5.54)
ax
max
where (%%I is the maximum absolute value of %ﬁ within

max
the shock, determined from the solution of the shock differ-

ential equations (see Fig. 5.1). 1If Yo = ¥y (as for instance,
in this case ¢ = ¢ = 0), let Ay Dbe the maximum abso-
1,0 1,1

lute value of y -y, within the shock (see Fig. 5.2). Then




y V8. X
( SHOCK CURVE)

FIG. 5.1
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]
LD)

t (5.55)
Y l > |

max

By equations 5.19 and 5.54

. - L; oo, |
w F
max

where lFImax is the maximum absolute value of F

along the
shock curve. From 5,48
L
4
= O
Q
L L
R _ R ,
T (= ) lw To-o, 1 =0(8) K1 (5.56)
Q
since Iwo—wll is of order 1.
It will also be true that
Ly K tg (5.57)

where te is the shock thickness with respect to the dimen-

sionless temperature 6, since by equations 5.20 and 5.54

L |6 -6

and thus
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fR LR IGImax
.= &) Ta =67 =0 1 (5.58)
2] LQ o 1
since IGImax and |90-61| can both be considered of order

1. Thus, when the Eddington approximation holds, the radia-
tive mean free path is smaller than the characteristic lengths
in which the gas dynamic variables change through the shock,
and radiation emitted in the shock will be reabsorbed within
the shock.

Equations 5.19 and 5.20 are of the form:

L(y) & = r(y) (5.59)

where L(y) is a diagonal matrix, in this case

63

y is a column vector, in this case

0
6
and F(y) is a line vector, in this case (F(w, 6), clw, 8)).

The boundary conditions on the problem are that vy is

known at two points, Po and Pl , such that:

Fly,) = F(y;) =0 (5.60)
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Since the right-hand side of 5.59 does not contain x
explicitly, and condition 5,60 applies at points P, and P,
which are the only known points on the shock curve, equation

5.59 cannot be integrated directly. That is, a Taylor series:

y(xo + Ax) = Y, + %ﬁlyoAx + (5.61)

will have all zeros on the right-hand side except for the

first term (if Ax is finite) and

y(x, + 8x) = v (5.62)
for all finite Ax. Points Po and Pl are called equilibrium
points of 5.59, and because of equation 5.60 x_, and Xy,

must have infinite values (either +o» or -w),

The problem of numerical integration of equation 5.59 is
discussed in Appendix C. At present it suffices to mention
that equation 5.59 is linearized in the neighborhood of PO

or Pl:

L -g% = M(y-y,) (5.63)

where M is a matrix whose components are

i
Mij =3y, (5.64)
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and a change of coordinates performed to reduce 5.63 to

dy _
Loy~ W (5.65)
If, in the present case, A? and AT are the solu-
1,2 1,2
tions of the equation
det | M- AL | =0 (5.66)

at Po and Pl respectively, it can be shown that (see
Appendix C): %i and %g are both real and positive; %i
and %g are real and of opposite signs, say %i < o, X% > 0:
there is a unique solution curve to equations 5.19 and 5.20,
for which P (the pre-shock state) corresponds to X = -®
and Pl (the post-shock state) corresponds to x = +w; and
the slope of that curve in the phase plane at Pl is:

_ 21
DO _ M211 - Mll 7\:l.LP (5.67)
Aw M22 - %lLQ M12
where, according to equation 5.6k,
M. =F =1-2 (5.68)
11 w w :
_ I . PN
M, = Fg =5+ 3 S6 (5.69)
- _ 4 _
My = Gy = op(s6% + (1 - w)) (5.70)
M =G, =1+ 8Dswo® (5.71)

22 C
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the matrix elements being evaluated at Pl' It is also shown
in Appendix C that the solution curve with slope 5.67 will lie

in that region of the phase plane defined by:
Flow, 6) < 0 : Glw, 8) >0 (5.72)

(see Figs. 5.3 and 5.4)

Since the values of w and 6 at a point on the solu-
tion curve near P, (0 = w*, 6 = 6') can be determined from
equation 5.67, equations 5.19 and 5.20 can now be numerically
integrated on the phase plane, using the quotient equation
5.47, 22 = 5 .

However, advantage can be taken of the fact that © K1
to eliminate the need for numerical integration. Since
5 ¢ 1, equation 5.47 immediately reveals two interrelated
facts. Assuming % is of order 1 at some point on the shock

curve, then as the integration progresses in the neighborhood

of that point, 8 will change much less than o, i.e.,
A6
|75 K1 (5.73)

Figure 5.5 shows that if this situation continues for some
distance, the integral curve will approach the curve F(w, 08)=0.
Alternatively, since the change in 6 along the integral curve
from P1 to Po is finite, the curve must be such that for

at least part of it

|2 1K1 (5.74)
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An integral curve of 5.47 must thus satisfy 5.74 for
some range of values of the parameter x, and if values of
X exist for which 5.74 is not satisfied, 5.73 must be sat-
isfied for these values.

Two cases must now be distinguished, according to the

sign of gw at point Plz
case A: F (P;) >0 (5.75)
Case B: Fw(Pl) <o (5.76)

The slope in the phase plane of the curve F = 0 at point

Pl is
F (P,)
deé w 'l
= = - (5.77).
dw F=0 FeIPlS

and thus is negative in Case A and positive in Case B, since

is always positive according to equation 5.69. Gw and

G, are also always positive. Since (see Chapter III)

1 '0
wZ = 152 (5.78)
Fw can be written
F =1 -—n» (5.79)
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Since P represents the pre-shock state, for which M > 1,
Ew is always positive at that point. Thus, two possible
shapes exist for the region defined by the inequalities 5.72,
as shown in Figs. 5.3, corresponding to Case A, and 5.4 cor-
responding to Case B, The value of Ki from equation 5.66
and the slope of the integral curve at Pl from equation 5.67

can be computed for each of the two cases with the following

results to order d:

AB Fo s
Case A: T5 = - fg-+é?(5 ) (5.80)
c g, 28 _ ¢ Cw + 0(82) (5.81)
ase B: go = F 5.

w

Thus, to order ©, the integral curve for Case A follows
the curve F = 0 at point Pl’ and for Case B the slope of the

integral curve at point Pl is negative but almost horizontal,

since 6 <{ 1. 1In other words, in Case A, the integral curve

satisfies 5.74 at point P,, while in Case B it satisfies 5.73.
Now 5.74 is a stable condition of equation 5.47 in the

direction from P, to Pg (i.e., of increasing ), provided

Fw is positive. That is (see Fig. 5.5), if F tends to in-

crease in absolute value as the integration proceeds in that

direction, | %% | tends to decrease, so that the integral

curve is forced into a direction for which | F | tends to




A8
AB) |
Bel<<'
DIREGTION F(w,8) =0
OF INTEGRATION
IF|>>8
F<O

SHOCK GURVE Iiﬁl« |
dw

FI1G. 5.5 TENDENCY OF SHOCK CURVE

TO FOLLOW F(w,8)=0
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decrease. Thus, once the curve satisfies 5.74 for some value
of x, x*, it will satisfy 5.74 for all x > x*, In Case A
this means that 5.74 will be satisfied for all x (see Fig.
5.6). A more exact statement of 5.74 can be found. Since
equation 5.47 is true, and near the curve F = 0, | %% I
along the shock curve is of order 1, while G 1is at most of

order 1 (see Appendix D), 5.74 can be expressed as

| ¢ | < 0(0) (5.82)

This is identical to 5.48, showing that for Case A the shock
curve staisfies 5.48 at all points.

In Case B the integral curve must proceed from Pl with
decreasing x 1in an almost horizontal direction (see Fig.
5.7) until it reaches a region where 5.82 is satisfied, whence
it must closely parallel the curve F =0 until point Po
is reached.

In both cases the shock curve in the phase plane can
thus be found to close approximation without numerically
integrating. In Case A the curve follows the curve F = 0
from P, to P (Fig. 5.6). In Case B the curve lies along
the line 6 = 6% from P, until that line once again inter-

sects the curve F = 0, and then follows that curve to Po

(Fig. 5.7).
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It can now be shown that in Case A the Eddington approxi-

mation holds. Inequality 5.48 has been shown to apply. From
dw

equation 5.19 Ly g = 0(8), so that

Lo §$-= A1) (5.83)
also

L, §2 = O(1) (5.84)

so that the characteristic length of all the variables in

Case A is L. If 5.49 is not satisfied, i.e., if

| T, T IDe (5.85).

then in one characteristic length

|AF | >) B (5.86)

so that 5.48 cannot be satisfied. Therefore, since 5.48 and
5.49 are both valid for Case A, the Eddington approximation
holds in that case. A sufficient condition for the validity

of the Eddington approximation is thus:

This criterion can be expressed in a number of ways, for

instance,
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6t o’ (5.87)

or

glf <y (5.88)

Inequality 5.88 is especially useful in the physical interpre-
tation of this result, since it shows two differenct circum-
stances in which the Eddington approximation is valid, namely:

(1) If the shock is very weak, so that Mf is compar-
atively large (e.g., for € ~ 0, if M > £0.6).

(2) 1If the radiation pressure in the post shock state
is so dominant that yi is large (e.g., for € = 18, yi ~ 8,
so that 7] > ﬁ? for any possible Ml).

By means of the jump equation, 5,87 or 5.88 can be trans-
ferred to pre-shock conditions, resulting in Fig. 5.8, which
shows the regions in the Mo - €5 plane in which the Eddington
approximation is valid. It can be seen from this figure that
for e 2 4.2, or for M g 1.3, the approximation always holds,
and that as the Mach number increases above +~ 3.5 or de-
creases below that value, the approximation holds for smaller
values of €60 There is thus only a limited region of low
€5 and intermediate MO for which the Eddington approxima-
tion is not wvalid.

The shock curves in the phase plane can be transferred

to real space (i.e., T and Vv vs. x), as is done in Fig.
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5.9. From Fig, 5.9 it is clear that when the Eddington ap-
proximation is valid both T and v vary over a charachter-

istic length L and that for Case B equations 5.19 and 5.20

Q’

lead to characteristic lengths LP for velocity (and there-

fore density) and L for temperature. However, the results

Q
shown for Case B are mathematical only, since one of the
physical assumptions used to obtain them is invalid. Their
correspondence, if any, with physical reality can only be
determined by solution of the equations of the first moment
approximation.

It is shown in Appendix C that a solution curve to these

equations exists, However, the determination of this curve

presents great difficulty.
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APPENDIX A

THE SOLUTIONS OF THE JUMP EQUATION

In this appendix equation 3.27:

w36 (w
Flw

1
- (al)
is studied and the following results are obtained:

(1) There are only two physically possible roots, «°

and o (0w°® > w’) which correspond to the pre- and post-shock

states respectively.

(2) w® 1lies between the larger of the two positive

roots of G(w) = O and the larger of the two positive roots

of F(w) = 0.

(3) ' 1lies between the smaller of the two positive
roots of G(w) = O and the smaller of the two positive roots
of F(w) = 0.

According to the definitions in Chapter III
Flow) = (1 - »)(1 - 7o) + (Aw + 22) (a2)
G(w) = (1l - w)(1 - go) + (A» + hZ) (a3)

. . . . m
where ® 1is the dimensionless velocity, ® =-T¥, and g and

h are functions of the specific heat ratio 7y

97
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o(y) = (a%)
n(y) = &= (85)

The constant K in equation Al is

k - 3 (a6)
where £(y) = 2= (A7)

The roots of Al thus depend on <y and on the three shock param-

eters:

a=283 -1 (A8)

.
s = 2= (a9)

E2m?
Z = —H'-P—s' (A10)

The constants on the right-hand side of these equations are
defined in Chapter II.
mZRT
The dimensionless temperature 6 = —pZ can be found

from equation Al using equation 3.1l or 3.12
(£0)¢ = K(@) (a11)

fo = - Elw) (A12)
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It is to be noted that for «v = %- F(w) = ¢6(w) and

£(vy) = 0, so that Al reduces to
F(w) = 0 (a13)

which is a mathematically degenerate case., However, even in
this case there are two physical roots, namely, the two posi-
tive roots of Al3.

For the purposes of this appendix equation Al will be

studied for v = 2, so that

2,
£(vy) = 3 (A1k4)
g(v) = 4 (a15)
h(v) = % (a16)
6(0) = ol - @)(1 - ko) + (a0 + 3 2) (a17)

This is the case of real physical interest, but mathematically
the results obtained for vy = % apply, with numerical differ-
ences, to all vy ) %. An analysis can be made for v E, the
results of which are quite similar to those obtained here, but
unimportant for the problem at hand.

The special case of Z = 0 (no magnetic field) will be
considered first, and then the general case 2 # 0 will be

studied,
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I Case 2 =0

Equation Al reduces to

G, (@) 1
W =K (a18)
where Gl and Fl are quadratic expressions:
G (w) = (1 - @) (1 - ho) + A (a19)
Fi(o) = (1 - 0)(1 - 70) + A (a20)

Equations All and Al2 become (for f = 3)

KGl((D)
(36)* = —(— (a21)
36 = - Fl(w) (a22)

so that, since 6 2.0 for physical solutions, these solutions

must have

G, (@) » 0 (A23)
F, (@) <o (n2k)

Now if G. has real roots, say &2 and o (a° > @t
1 , say & 505 2 @)

then A23 is satisfied on the real w axis for

EE; » (a25)

I\




and w > 53 (a26)

while if the roots of G are complex A23 is satisfied for

1
all real ®. If F,; has real roots, say 52 and E%(Eg >
5;), then A24 is satisfied on the real w axis for
— —
w2 Jw) wg (a27)

while if the roots of F are complex there is no real w

1
which satisfies A24. Then for any physical problem the roots

of F must be real., Since

1

s PR iﬁ“? - 7A (a28)

there is a maximum value of A in physical cases,
Al (a29)

Also, combining A25, A26 and A27, the physical solutions of

Al8 must satisfy

E‘% Dw ) 58 (A30)
ZB; Dw ) _(5;. (a31)

if the roots of G are real, A30 and A3l can only be sat-

1

isfied in that case if

101
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E‘% Z 6; (a32)
Wy > g (a33)

i.,e., if the roots of Gl lie inside the roots of Fl. To
show that this is the case, equation A20 can be subtracted

from AlQ to give

G, - Fy = 30(1 - ) (A34)
so that
Gl—F1>O for 0< w< 1
Then
—o
Gl(wf) 20
and Gl(B}f) >0
since at those two points Fl = 0. But this can only be
true if
"0 O
Qg 2. O‘)g .
d -1 -1
an © 2 Vg (a35)

i.e,, if the roots of Gl lie inside the roots of Fl‘




Thus, if the roots of Gl are complex, there is one
pPhysical region, R, defined by A27, while if the roots of
Gl are real, there are two physical regions, Ro and Rl’
defined by A30 and A3l respectively.

It is now possible to show that the roots of Al8 satisfy
the following conditions for every A and S:

When the roots of G1 are complex, there are two and

only two real roots in R. When the roots of G are real,

1
there is one and only one real root in R (pre-shock state),
and one and only one real root in R; (post-shock state).
This is the equivalent of the statement: For every pre-shock
state there exists one and only one post-shock state.

The proof of the above is based on the "root locus method"

(Ref. 46):

Equation Al8 can be rewritten:

(@ -of)@-af) 3 g (A36)
w(w - a¥)4(w _ 5;)4 K 81

Then, in the complex « plane

Arg(w_ag) + Arg(w—ag) - Arg(w) 4Arg(w—5%) - 4Arg(w-6%)

= Arg g7 = O (A37)
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In this expression Eg and E% are the roots of the left-
hand side and O, Z@ and 5; are its poles. For real w,
the argument of (w-wi), w, being a real root or pole, is
if w< w, and 0 if o > ®;. Thus a segment of the real
® axis to the left of an even number of real singular points
(roots or poles) must be on a locus of roots of equation A36,
the parameter of that locus being K.

For K = 0, the roots of A36 are O, 5% and E%, the
last two being roots of multiplicity 4y, As K > «, the roots
of A36 approach 68 and 5;. Since there are 9 poles and
only two roots, seven of the root loci starting at the poles
must terminate at the point at infinity. The set of loci
must be symmetric with respect to the real axis, since the
complex conjugate of any complex root must also be a root for
the same value of K. The root loci which approach infinity

27

to asymptotically to 7 lines at an angle of &= to each

7

other, all originating from the "center of gravity"

o° + ot - (w2 + )
o = 1—9 £ £ (a38)
c

=7

according to the general formula
2 Wi —'Z wpi
i i
o p

where
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W,y are the positions of the zeros
wpi are the positions of the poles

N and Np are the number of zeros and poles, respectively.
As applied to A36 the method can be summarized graphically

by two diagrams:

Case A: Roots of G, complex (Fig. Al)

1
Case B: Roots of G, real (Fig. A2)

1
(In these figures the x's represent poles and the O's represent
zeros. )
From these diagrams, it can be seen that:
Case A
If for a given K there is one real root (corre-
sponding to the pre-shock state) in R, then there is one and
only one more real root (corresponding to the post-shock
state) in R,
Case B
There is one and only one real root in Ro and one
and only one real root in Rl for any given K,
Thus there is one and only one post-shock state for every
pre-shock state.
II Case 2 # 0
The reasoning used here is similar to that in the previous

case. In equation Al, F(w) and G(w) have three roots, and

can be written in the general form
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Fy(a)) = Mg(u)) + Lh(w) (a40)
where Mg(a)) = o(l-w) (1-gw) (A1)
and Lh(w) = Aw + hZ (a42)
SO

F(o) = Fy /5(w) (243)
G(w) = F5/3(w) (Aaky)

The roots of F_(w) are the intersections of a cubic
curve depending only on g as a parameter, and a line with
slope -A and intercept -hZ (see Fig. A3), and can be

-— o 1 - o 1
labeled Wes W, and wg or wg, wg, and wb for F and

G respectively, or generically w;, w%, and w; as in Fig.

A3,

For physical solutions, since 6 ) 0O

G(w) > 0 (a45)
F(w) < 0 (A46)

As before, if G has real positive roots, then Al45 is

satisfied on the real positive w axis for

w;‘Z W (A47)

and w Z w; (a48)

107
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while if the roots of G are complex, A45 is satisfied for

all real . Also as before, w% and w% must be real,

and A46 is satisfied for

(o]} 1
wf.z w.Z we (A49)
Again, combining A47, A48 and A49 for the case of real wg
and w%, the physical solutions of Al must satisfy
o o
wg 2 w2 o (A50)
w;.Z ® > w; (a51)

so that it must be shown that the positive roots of G 1lie
inside the positive roots of F,

The proof here is different from that in the previous case,
since the functions F and G have two parameters (A and Z) rather

than only one, as Fl and Gl have, Here

G - F = 303(l-w) -2z (a52)
which is greater than zero for

w‘S w! o S.wls w!

where !, ®; and o} are the three roots of

(see Fig. AlL),
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Then, in order for the positive roots of G to lie be-

tween the positive roots of F, it must be true that

w! < g (353)

and wi < w; (A54)

or, since F(0) and G(0) are both greater than zero

Flo]) = 6(w}) > 0 (a55)
By substitution in equation A4Q

- - 1
1 - (g 2h)wl

F(w]) = 2l 507

1
]+Awl

or

1 - 3w
F(o]) = Z[—E‘Ei——] + Awj (a56)

since g - 2h = 3 for all <. F_(w!) is thus certainly

greater than zero if

w

==
PN
W=

(a57)

Now, at o = %, w2 (1l-w) = £ and from Fig. A4, A57 will
A4
27"
From equation 3.9:

be true if 2 <

8(1 + 2De) = D[(1-w)2 + A - 2] (A58)
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it can be seen that if a physical pre-shock state exists
4
(1-0°)2 + A - ap‘) 0 (a59)

where ®° is the value of ® for the pre-shock state, From

A59

Z S.[w(l'w)e]max + o®A (a60)

where [w(l-w)?2] is the maximum value of w(l-w)? be-

max

tween 0 and 1:

Then
4 . oo
< 57 t W A (a61)

Z and A are two constants which depend on the four inde-
pendent constants m, P, E and Q. Therefore 2 and A
are independent of each other, and for a particular 2 A6l
must hold for all possible A, in particular for A = O,

Then
z < 54- (n62)

and A57 holds, so that the positive roots of G 1lie between

the positive roots of F,
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Equation Al can now be analyzed by the root locus method.
Its left-hand side has 5 zeros, and 12 poles. It is possible

to define regions R, or R, and Rl in the appropriate case,

as before, and describe all possible root and pole combinations

in two Figs. A5 and A6. (Note, these figures are drawn for
o < We.
w; relative to wf is irrelevant.) The conclusions drawn

For the purposes of this discussion the location of
from these diagrams are identical to the corresponding con-
clusions in the previous case, and the general result is that
for every pre-shock state there exists one and only one post-
shock state.

The results of this Appendix can be summarized graphically

in Fig. 3.1, which 1is described in Chapter 3.
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APPENDIX B

SIGNAL PROPAGATION SPEED

In this appendix the signal speed in a gas under the
physical conditions described in Chapter 2 is derived using
the standard methods of gas dynamics. To do this, the time-
dependent mass flow, momentum flow and combined Maxwell equa-
tions (ignoring viscous effects and assuming infinite conduc-

tivity) are written:

%% + g% pv = 0 (B1)
Qv ., 2p4p + M4 7)) -0 (B2)
%'}f:‘sa;"ﬂ (B3)
combining equations Bl and B2
%% + v %ﬁ - - % §§-(p +p, + E§3> (BY4)

Equations Bl, B3, and B4 can be linearized by assuming

small disturbances about equilibrium:
— 1
P, = P, t P (B5)

p=2pgt P
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v=v (B7)
H=H +h' (B8)
where the total pressure:

P, =P + P, (B9)

the sum of the thermodynamic and radiation pressures, and it
is assumed that the fluid is stationary, i.e., that there is
no velocity in the large. Assuming p', p', v' and h' to
be first order infinitesimals, and pto’ Po and HO to be
independent of x and t, the equations become, to first

order:

at' + Py %il'= 0 (B1O)
Qv _]-_ﬁ. 1
%%l = - H éﬁi (B12)

Differentiating Bll and B12 will respect to t and x

respectively and combining:

2
32yt _ _ 1 3%t , Mo a2y
d

s (B13)

?

If it is assumed that the disturbance is adiabatic, then
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bLp'! dp | =7 (B14)

i.e., a® is the change in total pressure due to a change in

density at constant entropy. The Alfvén velocity (Ref. 47)

- uHZ |
B = — (B15)
o
so that Bl3 can be rewritten:
d3v!  a? 33%p! > d2y!
3tz T T Po Bxgt + BT 3% (16)

If BlO is differentiated with respect to x and com-

bined with Bl6 the result is

2 2
Syl (a2 + B2) SXV' VS va' (B17)

I

which is a wave equation with propagation velocity

v = a? + B® (B18)

In order to determine a2 in terms of the thermodynamic

variables, the gas can be considered as obeying the equation

of state:

— 1 4
P, = PRT + 3 aT (B19)

with energy per unit mass




4
RT  aT (B20)

U=
Y -1 P

From the combined first and second laws of thermodynamics:

Py
TdS = dU - > dp (B21)

au Py
e - =0 B22
i (B22)
Using equation B20
4
du Py R yar3ar _ (Pg * aT%)
dp —F_ 0 = ('Y- l+ ) )dP - p2 (B23)

where all the derivatives are at constant entropy. Then

n

(1 + =€)
d_';‘z.';l : 3 (B24)
<7 = + 4e)
where
_ at®
e =%3R (B25)
From Bl9
ap
t 4 4T -

117
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so that
(1 + % e)®
a2 = RT{1 + T (B27)
(,Y -7+ he)
and the signal speed
v, = va® + BT = +/y'RT + pH"/p (B28)
where
(1 + % e)®
v' = |1 + 1 (B29)
(7 T+ 4e)

is the equivalent specific heat ratio for signal speed.
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APPENDIX C

ANALYSIS OF THE SHOCK STRUCTURE EQUATIONS

This appendix deals in general with equations of the

form

L %ﬁ-: F(y) (c1)

where L is an n X n diagonal matrix,
y 1is an n dimensional column vector,
F(y) is an n dimensional line vector,
and equation Cl is to be integrated between two points Yo

and Yo such that
F(y,) = Fly;) =0 (c2)

The analysis is later specialized to the cases of two equa-

tions, namely, equations 5.19 and 5.20, and of four equations,

namely, the equations of the first moment approximation.
Points Yo and y, are called equilibrium points of

Cl, and it is clear that any direct integration of Cl from

either point Yo ©F ¥y will fail. For instance, if > 9

is the value of x for which y = Yor then by Taylor's

theorem
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y(xo + Ax) Yg dx|

Ax+‘—§§‘él ox2 (c3)

y(x, + b%) (c4)

Il
<
(o]

for all finite Ax since all other terms in the series will

be proportional to F(yo). Then x_ and x,, the value of

1’
x for which y = Yo must both be infinite in absolute value,
and a method must be found for the integration of Cl other
than a direct one.

Equation Cl can be most conveniently treated in its
"phase plane," which is an n-dimensional space with Cartesian
coordinates yl...yn, and its behavior in the neighborhoods

of the points in this space vy and Yy must be studied

(Refs. 16 and 17). 1In these neighborhoods

F( + Ay) = My + (By?®) (c5)

Yo,l

where M is the n X n matrix

= —i (c6)

evaluated at the particular point (y or yl). In each of

o
these neighborhoods in turn a change of origin can be per-
formed, so that for each equilibrium point the linearization

of Cl can be written as
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The formal solution of equation C7 is

n %kx (c8)
y = 2 e c8
k=1 Ak

where each Ak is a column vector, and the n Ak's are the

solutions of the equation
det | M- AL | =0 (c9)

To show that this is the case, each term in C8 can be

seen to satisfy C7, i.e., by substitution

kkx ka
LM A e = MA e (c10)

or

(M - A L)A = 0 (c11)

which is true for arbitrary A if and only if C9 is satis-

k
fied. Thus, in the neighborhood of an equilibrium point,

solutions of Cl have an exponential dependence on X given

by C8.

It has been shown that X and xl must be infinite

in absolute value, i.e., equal to either + or -«, There can
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be two distinct directions of integration of Cl, either from
Yo, to vy, 1In which case X, = @ and X, = 4o or from vy,

to vy, in which case x; = - and x, =t o, However, the
nature of equation Cl is such that only one, if any, of the
two directions of integration will give a unique solution
curve of Cl which passes through both Yo and Yy

At each equilibrium point in the phase plane, call the
exiting direction that for which its corresponding x 1is -«
and the entering direction that for which its corresponding
x is +w. It is clear that in C8 certain of the terms will
apply to the exiting direction, namely, those whose %k are

> 0, while the rest of the terms, namely, those for which

%k < 0, will apply to the entering direction. Let

= iti !

r, the number of positive Ak s at Yo
— ] 1

Sg = the number of negative %k s at vy,
= iti !

ry the number of positive Ak s at Yy

s = the number of negative %k's at y,.

Then, the exiting direction at Yo occupies an ry dimen-
sional manifold, i.e.,, if Xq corresponds to =-», the inte-
gral curve of Cl in the phase plane can leave Yo in any
direction which lies within an TS dimensional plane at Yy,
determined by the eigenvectors corresponding to the ry

positive kk's. Similarly, the entering direction at Yo

occupies an So dimensional manifold, and the exiting and
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1 1 dimensional

manifolds respectively. Call the direction of integration

entering directions at Yy, occupy r and s

from Yo to Yy the forward direction and from Yy to Yo
the backward direction. Then it is clear that in the forward
direction, the solution curve of Cl occupies an r, dimen-

sional manifold at Yo and an s dimensional manifold at

1
y whereas, in the backward direction, the curve occupies an
So dimensional manifold at Yo and an ry dimensional man-
ifold at Y- Then an integral curve in the forward direction
lies along the intersection of an ry dimensional manifocld

and an s dimensional manifold, while an integral curve in

1
the backward direction lies along the intersection of an ry
dimensional manifold and an So dimensional manifold in n
dimensional space.

The dimensionality of the intersection of a p dimen-

sional manifold with a q dimensional manifold in an n

dimensional space is given by
n-{(n-p)-(n-qg)=p+ag-n

so that for a unique integral curve (a one-dimensional mani-

fold) to exist in the forward direction it must be true that

r +s,=n+1 (c12)
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and for such a curve to exist in the backward direction it

must hold that
r, +s_ =n+1 (c13)
It is clear that Cl2 and Cl13 cannot both be true at once,
since
r +s =1, + s, =n (c1h)
so that there is at most one direction of integration for
which a unique integral curve of Cl exists.

The Eddington Approximation

In this case n = 2 and the two equations corresponding

to Cl are

dw _ 8 .1 qpe _ 1 _
Lp g =@+t gt 3 s6 1 =F(w, 6) (c1s)
L, %% — 5 - p[(1-w)2 + A] + 2Dswd* = G(w, 6) (C16)

When n = 2, a simplification and extension of the above
analysis is possible (Ref. 17). In the first place, it is
clear that a unique solution curve to Cl will exist if at one
of the equilibrium points both A's have the same sign (such

a point is called a node), and at the other point the Al's are
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of opposite signs (such a point is called a saddle point).
The integral curve in this case will be the intersection of
a two-dimensional manifold (the entire phase plane) with a
one-dimensional manifold, and the slope of the integral curve
in the phase plane at the saddle point can be determined.

If at the saddle point A° is the eigenvalue of opposite
sign to that of the A's at the node, the solution to C7 near

the saddle point corresponding to A® can be written:

'yt SN X (c17)
y? = y® SM X (c18)

and, substituting into C7
Lyp My = Myt + My ay® (c19)
L22?\sy2 = My vt o+ My y2 (c20)

so that

(M, - ?\SLll)yl + M y® =0 (c21)
My vt o+ (My, - ?\SL22)y2 =0 (c22)
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Since the determinant of the coefficients of C21 and C22 is

zero, they have a common solution, and the ratio of v2 to

yl is given by:

2
§T R § 11 _ 21 (c23)

But equation C7 has been obtained by a change of origin such

2
that the saddle point corresponds to y' = y2 = 0. Thus %r

is actually the slope of the solution curve at the saddle

point, and

M - AL -M

2
dy= _ _ 11 11 _ 21s (cay)
12 M22 - A L22

at the saddle point. Thus, in the case of n = 2, equation
Cl can be integrated numerically in the phase plane from the

saddle point to the node using the quotient equation:

Loo gy2

T (C25)
L11 dy

the slope of the solution curve to C25 at the saddle point
being determined by C24,
The above method can be applied to equations Cl5 and

Cl6. The components of the matrix M are
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The

and

The

M, =F,=1- ﬁ; (c26)
M, =Fg= % + % s6° = %(1 + % €) (ca7)
M, =G, = 2D(s6* + (1-w)) (ce8)
My, = Gg = 1 + 8DSwf® = 1 + 8De (c29)

equation for the eigenvalues A can be written

2 _
LpL M? - (LQFw + LpGg)A + (F,Gg - Fer) =0 (c30)

sum of the eigenvalues at either Yo ©°F Yy is thus

!

G
At 4 g7t = o+ EQ (c31)
1 P Q
their product is
NOsIAgr Y = EJZ—(FwGQ - FgG,) (c32)
PQ

term in parenthesis in C32 is equal to

(1 + 8De) (1 - 32)

since

127
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4
G, = 2D %(1 +3 €) (c33)

using the jump equations, and thus

[ 6 2D(1 + % €)®
F,Gg = FgGy = (1 + 8D€)t} -zt T T Rbe (c34)
_ ‘o
F,Gg - Fgl,, = (1 + 8D€)Ll - 5 (c35)
Then
P sl —2 1
)‘(])_ 1}\c2> 1 _ LPLQ(J_ + 8D€O,l)[l - ﬁg—z] (c36)
Now M_ > 1 and M, { 1 so that
AAS > 0 (c37)
and
AMAL <o (c38)

Point Yo is thus a node, and Yy is a saddle point, To
determine whether the positive or negative A is to be

used, it can be seen from C31 that
AQ + A3 D 0 (c39)

since Fw and G are both positive at that point. Then

C

%2 and %g are both positive, and the negative eignevalue
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at Y, is to be used. The integral curve is thus exiting
at Yo and entering at Y5 %y corresponding to +o., The

numerical integrations, however, must be carried on from

X = 4o tOo X = -o, since the slope at Yy is known, given
by
1
%%I . F -Flep - -2 fwx — (cko)
Yy e e 17Q

Ki being the negative eigenvalue at ;.

The First Moment Approximation

In this case n = 4, the four equations corresponding to

Cl being

L, 2w+ g+30,-1=F(y) (ck1)
de 2Déy

L, S2=6 - 20[(1-w)2 + A] + 2Dwp_ + —3z— = F, y) (c42)
o B N

Lp g = ~ ¢ = F3(y) (c43)

d¢
1 1 _ _ =
5 Lg ax = s6* - ¢ = Fy(y) (chh)

It will be shown here that a unique solution curve to Ch1 -

C44 exists. The matrix M is
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6 101
1 -7 w 3 0
2D6 4 2D
==(1 + 1 D ==
o (L) 2 3B
M = (cks)
0 0 0 -1
de
0 © -1 0
so that C9 becomes
6 1 1
2D6é 4 _ 2D
m (1 + 3 €) 1 - ALy 2Dw 36
=0 (c46)
0] 0 -KLR -1
-AL
0 % -1 —-—3'—R

The determinant in C46 is more conveniently expressed as

the sum of two determinants, equation C46 becoming
1 1

(y'-1-y'Lp) & I oo
4 _ 2D
2Dw(1l + 3 e) 1 ALy 2Dw 3B
0 0 -ALp -1
-AL
he —R
0] & -1 3
1 1
1 s § 0
4 2D
-2bw(l + = €) 1-AL 2D ==
+ (1—'1%2) 3 & 3P =0 (ch7)
0 0 -ALp -1
-AL
Le R
0 Y -1 -—_3
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1 '8
where M= 1 152 .

The determinants in C47 can be expanded to give the fol-

lowing equation in A:

L
P RCS s O B LIS WSl Ut ) W
Lp" v Ly Lply\ ¥ 1+ % € Lz
3L ' L 3
Q fy'-1 P 1 A
+ T2 + 7=(1 + 8De) A - (1 - 3=) -
LoLply v! LQ M y'LP
L
1 8 > 3 3(1 + 8De)
- T =7(y + 3 De)N® - A+ = = 0 (c48)
LpLyy' 3 v 'LpLply LpLply
where
_ 8De
Ly = Ly + 355 g (ck9)
Equation C48 can be written
AA® - a A2 - a. A+ a ]
2 1 o' _ Ap(n)
V'Lp(1 - 32) = —xm T B A% - b A+ B, a(M) (c50)

where all the coefficients a; and bi are positive and

3 2 _
p(nN) AS - azk al% + ag (c51)

a(n) = A® - Db A% - Db

o 1M+ by (c52)
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By Descarte's rule of signs p and q have one real negative
root each. The root locus method (see Appendix A) can now be
applied to equation C50, with V'Lp(l -'ﬁt), the root locus
parameter, being positive for state 0 and negative for state

1. The root loci for states O and 1 are shown in Figs Cl and
C2 respectively. From Figs. Cl and C2, in which the singulari-
ties are not distinguished as to roots and poles, it is clear
that there are two negative roots of Ci8 at P, i.e., s; = 2,
and that there are three roots with positive real part at Po,

i.e., r = 3. Thus

r,+ s, = 5=n+ 1 (c53)

and a shock curve exists.
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APPENDIX D

SOME NUMERICAL RESULTS

The purpose of this appendix is the presentation of the
numerical procedures and results pertinent to the analyses
and conclusions in the rest of this paper. Numerical studies
were made of 45 cases, as listed in Table D1, with the fol-
lowing ranges of parameters:

Initial Mach Number 50 > M_ ) 2

Initial Radiation Parameter 10 ) € 0 0.1

Initial Temp, in °K 10° 2 T > 1o0*.

In all of the above, the magnetic field was zero. No cases
with non-zero magnetic field were considered numerically.

In Table D1, the cases are divided into 15 groups of three,
denoted by the Roman numbers I - XV, the cases included in
each of these groups having the same values of the dimension-
less parameters Mo and €t Many of the results presented
below depend only on these parameters, SO that only 15 casés
need be considered., Table D1l includes, besides the initial
values of M, €, and T for each case, also the final values
of these three variables.

There were four numerical problems which had to be solved

in connection with this paper. These were:
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(1) Ssolution of the jump equation,

(2) Determination of the shock curve,

(3) Finding the maximum value of G(w, 6) along the
shock curve, and

(4) Finding the region of validity of the Eddington
approximation.

Each of these problems will be treated separately below,

Solution of the Jump Equation

This was essentially a simple algebraic problem, and an
IBM 1620 Fortran program was written for its solution, This
program is listed in Table D2. The inputs to this program
are the initial conditions Mb’ €5 and To, and the outputs
are the final conditions Ml’ €4 and Tl as well as the
values of velocity, density, thermodynamic pressure and total
pressure at the initial and final states. The actual solution
of the jump equation is accomplished in a subroutine labeled

' in which the location of the post-shock state on

"Ranhug, '
the w axis is approximated by the method of Fig. 3.1, and
Newton's method is then used to find the value of o' as
closely as desired. The results for the post-shock state

are partially tabulated in Table D1, and are shown graphically

in Figs. 3.2 - 3.7.
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The Shock Curve

Thanks to the analysis in Chapter V, the determination
of the shock curve is reduced from a problem in numerical
integration to an algebraic one with negligible loss of ac-
curacy. An IBM 7090 Fortran program was devised which, using
as inputs the outputs of the jump-equation program,

(1) Determines the values of the characteristic lengths

p’ LQ and LR at the initial and final states.

(2) Finds the values of —P, L’Q, ER and &

(3) Finds the sign of F, at point P, and thus
classifies the problem according to whether or not
the Eddington approximation is valid,

(4) Determines 20 - 30 points along the shock curve in
the phase plane using the methods of the Eddington
approximation whether or not it is valid, and

(5) Finds the shock thicknesses t and tg, using
the results of (4), and compares them to ER' This
program is listed in Table D3.

|éﬁ|

It is assumed in Chapter V that the parameter ©§ =

ll
©O

is very small. That this is the case is demonstrated in

Table D4, which lists the values of Lp, Lg, fQ and_ © for
L

each of the 45 cases. Also listed in Table D4 are EB and

L w

EB for each case. (It is to be noted that the meaning of
6

the latter results is doubtful in cases where the Eddington

approximation does not apply.) Table D5 is a classification
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of the 15 groups according to the validity of the Eddington
approximation. In Figs. 5.6 and 5.7 phase plane plots of the
results of (4) are shown for typical cases in which the
Eddington approximation does and does not apply, respectively,
and the corresponding curves of T and v vs X are shown in
Fig. 5.9. Figure D1 shows how the temperature shock thickness
varies with M0 for various values of €5t The values of

tg reg for use with this figure are given in Table D6.

The Maximum Value of G(w, 6)

A necessary step in the argument

ct

hat the Eddington
approximation holds when inequalities 5.48 and 5.49 are sat-
isfied is the statement that the maximum possible value of
G(w, 6) along the shock curve is of order 1. The validity
of that statement was tested for cases I - XV using a simple
numerical procedure, the evaluation of G(w, 6) along the
curve F(w, 6) = 0. It can be shown that the maximum of

G(w, 6) in the allowed region:

Flw, ) <0 (D1)

G(w, 6) > 0 (p2)

is indeed along the curve F(w, 6) = 0. If an arbitrary path
in the phase plane

Aw = h (D3)

A6

i
~

(D4)




138

is chosen, the change in G along that path is

86 = G h + Ggk (D5)
Since

G, = 2D(86%* + (l-w)) (p6)

Gy =1+ 8Dws63 (p7)

and both are greater than zero, AG will be positive along

a path such that
h>O (p8)

kDO (D9)

Then, from Figs. 5.3 and 5.4 it is clear that the maximum
value G . Of G(w, 6) in the region defined by D1 and D2
is along F(w, 6) = 0, and therefore the maximum value of G
along the shock curve must be less than or equal to Gmax'

the Values of Gma for cases I - XV are listed in Table D7,

X
from which it is clear that for those cases G(w, 6) along

the shock curve does not exceed one,

Region of Validity of the Eddington Approximation

The criterion for the validity of the Eddington approxi-

mation is

1
1 -2 50 (D10)
(Dl
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and therefore the curve

el
—= =1 (D11)
(l)l

6* - ot plane,

is the boundary between two regions in the
in one of which the approximation is valid and in the other
one of which it is not. The curve D1l can be transferred to
the 6° - w°® plane by means of the jump equation. This is

accomplished by means of an IBM 1620 Fortran program which is

listed in Table D8. 1In this program, curve D11 is found for

L )

11 - W6 1
50 L <

: (D13)

and the corresponding values of 6° and w® are calculated
by means of the subroutine RHIN wherein Newton's method is
used on the jump equation AlS8.

The origin of the limits in D12 is as follows: Besides
satisfying D11, 6% and o' must satisfy the jump equations,
and must also both be greater than zero. The strength param-
eters A and S must also be greater than zero. 1In particular,

the following must be satisfied:

et 1

4
F(w, 91)=wl+F+§Sel -1

I
O

(D14)
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(36*) = - (1-0*) (L-7w") - A

(D15)

Equations D14 and D15 can both be written in terms of

w* as follows:

2
100 - 8t + 1 = -A

(D16)

(D17)

Since S and A must both be greater than or equal to

zero, D16 can only be satisfied if

20t - 1< 0

or

wt < %

and D17 can only be satisfied if
2 1
100t - 8 +1<0

or

N 4 + V6
10 Lo 715

Inequality D12 is derived from D18 and D19.

(D18)

(D19)

The results of the calculation described in this section

are shown in Fig. 5.8.




TABLE D1

INITIAL AND FINAL STATES

Case No. M T (°K) M € T (°K) Rom. Des
[o] o o 1 1 1
1 2 0.1 104 0.598 0.278 | 1.88x10*%
2 2 0.1 10° 0.598 0.278 ] 1.88x10° I
3 2 0.1 10° 0.598 0.278 | 1.88x10°
'y 2 1 10% 0.580 1.5 | 1.59x10%
5 2 1 105 0.580 1.54 | 1.59%x10° II
6 2 1 108 0.580 1.54 | 1,59x106
7 2 10 10% 0.570 11.50 | 1.47x10%
8 2 10 105 0.570 11.50 | 1.47x10% III
9 2 10 108 0.570 11.50 | 1,47x108
10 5 0.1 10% 0.429 1.92 [ §.46x10%
11 5 0.1 105 0.429 1.92 | 4. 46x10° v
12 5 0,1 108 0. 429 1.92 | 4 46x10°
13 5 1 10% 0.409 5.12 | 2.98x10%
14 5 1 10° 0.409 5.12 | 2,98x10° v
15 5 1 108 0. 409 5.12 | 2.98x10° '
16 5 10 10% 0.398 25.42 | 2.41x10%
17 5 10 105 0.398 25.42 | 2.41x105 VI
18 5 10 108 0.308 25.42 | 2.41x10°8
19 10 0.1 10% 0.382 6.71 | 7.3%x10%
20 10 0.1 108 0.382 6.71 | 7.34x10° VII
21 10 0.1 108 0.382 6.71 | 7.34x10°
22 10 1 10% 0.372 14,82 | 4,.53%x10%
23 10 1 10° 0.372 14.82 | 4.53%10° VIII
24 10 1 1086 0.372 14.82 | 4,.53x106
25 10 10 10% 0.366 64.27 T 3.47x10%
26 10 10 10° 0. 366 64.27 | 3.47x10° IX
27 10 10 108 0.366 64.27 | 3.47x10°
28 20 0.1 10% 0.36h4 20.53 | 1.10x10°
29 20 0.1 10° 0.364 20.53 | 1.10x10° X
30 20 0.1 108 0.364 20.53 1,10x107
31 20 1 10% 0.360 42,75 1 6.61x10%
31 20 1 10° 0. 360 42.75 | 6.61x10° XI
31 20 1 108 0.360 42.75 | 6,61%x10°
32 20 10 10% 0.357 176.96 | 4.95x10%
33 20 10 10° 0.357 176.96 | 4.95%x10° XII1
34 20 10 106 0.357 176,96 | 4.95x10°
37 50 0.1 10% 0.356 83.93 | 1.79x10°
38 50 0.1 105 0.356 83.93 | 1.79x10° XIII
29 50 0.1 108 0.356 83.93 | 1.79x107
40 50 1 10% 0.355 170.97 | 1.06x10°>
41 50 1 10° 0.355 170.97 | 1.06x10° XIV
42 50 1 108 0.355 170.97 | 1.06x107
L3 50 10 10% 0.354 696.5 7.86x10*%
Ly 50 10 105 0.354 696.5 7.86x10° Xv
45 50 10 108 0.354 696.5 7.86%10°8
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TABLE D2
#1608
COMMON COVeCNT4CT34RQCT AR
1IN0 FORMAT (F1PeSe2(aXaE1245)45X411)
101 FORMAT (CF1PeS4aAX S 12e5H5015)
102 FORMAT (BHCARF NOeol3)
107 FORMAT (17
107 FORMAT (3H PTea4Xe1HMe 16X eOHTHETA L 12X +SHOMEGA 12X s 7HEPSTI_LON)
108 FORMAT (1544 (2X+sF15.81))
109 FORMAT (3H PTed4Xe8BHVELOCITY s 7X e 1 IHTEFMPFRATURF ¢ 4X s THDFNSTITY ¢3X e 1 3IHT
THFRM, PRFCC 442X e 11HTOTs FPRFSS, )
117 FORMAT (1544(2XeF13eHh)eIXeF13e6)
117 FORMAT (P(OXF1548)e 15X ¢330X41H1)
117 FORMAT (AF 15484 1GXe1H1)
RFAD 103, INDIN
READ 1N14 CCWNDFL «KC

GAMMA = G4/3,
R = 16e634F 7
NE = 1e/%
NFEP2 = 2e*DF
SR = Te6HT7F=18
m = ININ

A RFEAN 10Ne FM1 D1 4T14+JJ
DYNCH 1024 1D

HOY = XTI *#XA/(FOS #P)

AP = 1a4 (1 a4/ ¥FPS1)RRD /(1 a/NF2H4 4 ¥FPST)
1Y = QORTF(GPIX*DXT1 )%*FMY

P1 = HO1*R¥Ty

PT]1 = P1%¥(1«+FPS /2,)

AT = HOY*Y)

NS = ASH )] +PT]

FCS = ASKITI4ACK(RETIH (1 o /NF24FPSI =111 #1111 /D g )
Al = Po*FCRAQ/(OTXNT )=,

RET = AR/ (2 4NF1CXRAC)

Ay - A /0T

CAT = RECOYERCNY

W1l = COV¥

Hl = COTH*TH

S = FRPSI/(WIxHI*¥x2)

1F (SENSF SWITCH 1) 18427
180 PANICE
P7 GO TN (194¢2A) 0 J)
10 CALL RANHUGINE ¢ Sy AL oW1 «CCeWPeHP 4 )
P26 IF (SFMNGF CWITOH 1) 2021

22 PAaNGE
2100 TA (1N4HK) Y
10 U2 = w2/00v
TP = HP/C0T
EDECD = CRWIHHP %]
GP2 = 1e4 (] e48e/3a¥FPE2IRXD /(1o /NED+4  #FPE2)
FM2 = HP/SORTF (GP2*¥R*¥T2)
HO? = AS/12
P2 = HO2¥RXT?
BTZ = PPR(1 e+FPS2/3)

CT3 = COT*COT*#COT

CNCT = SOARTF(COT)H

C2P = CLR(HZW2)

CRA = CERIHYI W)

PUNCH 107

K = 0

PUNCH 1084¢ KeEM]I sHY1 ¢W] 4P




TABLE D2 (Cont’d,)

K = 1
PUNCH 108+ KoeFMZ24HZ2 ¢ W2 FPR2
PUINCH 109

<K = N
PUNCH 1104 KaUl1aT1eHO1 P11 ,4PTI
< = |

PUNCH 110s KsU2¢T2.HO2P2,PT2
PUNTH 113¢ EM]1 EM24AL ¢S
PUNCH 1136 WleW2eH]1 H2

DUNCH 113+ COVeCOT«BETAS
PUNCH 1124 CPPCRO

In = 1N+
GC0O TO 6
FND

#1605
SUBROUTINE RANHUG(DAGSAGAA WAL eCAGAZ A GN)
DIMENSTION C(10)1+F(10)

N o= ]
D = Ae=14e/NA
R = F4¥NA*3/CA
Ct1)Y = 2401
Ct2) = =10976.
C{RY = 2D188B4+13772.%#AA
C(a) = —(1904804,+4T7044%AA)
CASY) = S 766 e4+5964 ¢ HAA+P4 4, HAARAAN
CUE) = =(2720e+33C2, #AA+6T2+HAAXAA)
CAT) = 412e+BO P HALFAE6BHAANNALDPBHAARAARAA
THUBY) = —(P2e+P6¢¥AA¥ (1 e +AAI+2 4 HAARAARAALRK (T o~D) )
ClO) = (1e+AAYRNL44(Re—-D)IXR
Cl10) = ~(1e4LAYRR
L} = Te—=D
IF (DY 14413412
172 WR = (4e¢=SORTF(Ge=Te¥AA)) /7
NDIS = (-1 ) R¥P—L g HIIKAA
15 (NIS) 18416416
15 WFE = (4e343SORTF (Ge=Te*#AA)) /T
GO TO 7
16 WF = (1141 e=SORTF(DIQ) )/ (2e#))
coO 1O 17
14 WR = (U+1 e=SAQRTF ((U=1¢ )R R2-4¢%UXAA) )/ (2 ¢%U)

NIS = Ge=T7e*AA
IF (NIS) 18418419

18 WF = (U+]1e+SORTF ((U~1 e )R X2—4 ¢ ¥UIKAAY ) /(2o %lS)
GO TO 17
19 WF = (4e=SORTF(DIS))/Te

17wl (WFE~YB)/10e
S W2T = wR
F(l)y)y = (1)
PO 20 1 = 2410
POFAl)Y = CHII+F (1-1)*w2T
R = Fe10)
22 W2PT = w2T+w!
IF (WE=W2T) 34344
W = wWl/10,
GH TN 5§
4 F(1) = (1)
DO 8 1 = 24,10
8 F(lY = C(1) 4F(1=-1)%w2T
IF (R¥F(10)) 1410427
227 R = F(10)
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GO TO 23

17 RFTURN

1 FP = 060
PO 9 1 = 149
X1 = 10=-%

O FP = FO+XI*C(I1I*W2RTR¥(O-1)
NX = F(IN)Y/FP
W2T = w2T-nNX
1F (ABSF(DX)=CA)Y 10410411

1N A2 = wWPT
A = ((1e=A2) ¥ (Te*AP=14)=AB)Y/D
RFTURN

11 F(1)Y = €(1)
NO 2 1 = 2410
P2 F(])Y) = COCIY+F(1=-1)*W2T
GO TO 1
FND
*#1605
FUINCTINN CLR (HaeW)
COMMON COVCOT«CTIaSOCT AR

T = H/C0T
Tl = 2403G5F«=2%TH%(14/3s)
IF (DeB~T1) 1167
1 CON = 1e4T])
GO TN 3
2 CON = le/{1e=-T1)
2 Cte = oH009F =™ RHAHIHASQORTF (H)¥WHRW / (ASHASKRCTIARSQCTRCOVRCOV ) ¥CON
QFEFTURN
=N
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TABLE D3 .
FOOF (THI ¢OM1)I=THI /OMI 4OM] + (SRTH]I ¥THI#TH1*#TH]1)/3e—1¢
GOOF (TH2 qOM2)=THZ2=D*( (1 e=OM2) ¥ (1 ¢=0OM2)+A) 42 e ¥DHOM2 RS THR2 ¥ TH2 ¥ TH2 ¥
1TH?
FOMF (THY1 4 OM1 ) = 1e=TH1 /(OM]1 *OM1 )
TOFF(TH?2 ) = THZ2 /CT
VNFF(OM?2 )y = OMZ2 /CV
FPSF(TH3 40OM3 ) = S*¥OM3I %TH3 ¥TH3 *¥TH3

CAMPFE (F ) = 1442 e%(1e4+8e¥F /) ¥ %D/ (34484 %*F)
PSIF (VeT) = 9802F-1SHVRTRTXT/FM

CTHFE (HaW) = | ¢ +B#¥NAFPSF (HW)

GOME  (HeW) = 24%¥DR (] ¢ =W+ RHRHEHRH)

FTHFE (HeW) = (1e+as#EPSF (HoyW)/3e)/W

104 FORMAT (1H0D«22H OUT OF ALLOWFD REGION)
108 FORMAT (1HO. 18HINDETEFRMINATE FORM)
106 FOARMAT (1HO. 127H F = 0O CURVFE)
OR6 FNARMAT (1HDW1IHINCR. ('/2)413)
QOR FORMAT (F6Ee1,4215)
Q97 FARMAT (1HOWSHTV /L P 12X 7HTV/M¥_P)
1M8 FORMAT (1HOGAHTHETR=F15,R,4,4X6HNMFGS=F15,8)
O FORMAYT (S15)
10N FORMAT (1HN«2HPT 77X 1HX 16X «SHOMEGA 12X SHTHFETA 12X+ 1HF 16%s 1HG
11AX 4 1HM)
111 FORMAT (1H 4 1H¥414+6(2X4F15.8))
1N1T FARMAT (1H IS8 (PXF15,8))
102 FORMAT (1HNWEHMING FellIXeT7THVEL e THe ¢ 10X s 7HRAT=VFL ¢ 10X «9HAT/ OMEGA 8
I1XeEHTHFETA)
1072 FORMAT (1H +F 154844 (2XF1548))
102 FORMAT (1HOG6HMAXe Gell¥ eBHTEMP aTHe 4 IX 4 BHRAT-TFMP 49X ¢IHAT/ OMEGAB
IX s SHTHFETA)
103 FORMAT (1HN414HMAX, DDPHLI /PHT ¢ 3X ¢ 1 SHMAX ¢ 2TFRM /1 TFRM,, 3X ¢ GHAT/ OMFGA
1e 77X SHTHFTA)
1104 FORMAT (1H +F154B4 (22X sF15,8))
RA FORMAT (1H1 RHCASFE NN, 173)
QA FOARMAT (1H )
8BS FORMAT (4F15,8)
QOA FORMAT (1H +F15,8+2XF15,8)
96 FORMAT (1HN 7Xea3HMN= F15,8+s7Xs3HMI= E15,8¢8Xe2HA= E15.8B+8X 2HS=
1IF 1548
07 FORMAT (1H 4X6HOMEGO= F1548s 4X6HOMEGI = F15¢Be4X6HTHETO= E15e8e
14X 6HTHFRE T 1= F154R)
297 FORMAT (1H 7X+3HCV= F15,B«7Xs3HCT= E15eB4sS5X+SHBFTA= F15e8¢8X¢2HM=
1IF15,.,8)
194 FORMAT (4{(PXF15.8))
195 FORMAT (2(2X+F158))
196 FORMAT (1HO 4XSHLP (1) 12X SHLP (D) 12X «5HLR (1) 12X «SHLR(0O)Y 12X
1SHLO(1)Y 12X«SHLOQ(O))
197 FORMAT (1 H A(PX+F15e8))
190 FORMAT (IR 1R.8)
191 FORMAT (1HO 3IXs7HLAMBDA= F1Se8B44XOSHTHETS= F15e8B4s4X e 6HOMFGS =
1F15,48)
192 FARMAT (PF15,8)
192 FORMAT (1H 4X+6HLP(S)= F15¢B4aX6HLR(S)= E1548)
Q8 FORMAT (1HO 2HPT aX, 1HM 16X THT 16X 3HEPS 1aX 1HVY)
0o FORPMAT (1 H [12¢ 4(2Xe F1548))
91N FORMAT (11H NNLY CURVF)
1999 FORMAT (1HO14HOUTSIDE CURVES)
3999 FORMAT (1H +1Se1H¥415)
1000 FORMAT ( 2H o GOS5X6HFY = 0O)
1001 FORMAT (1H 95X e 7THFW POSe)
1002 FORMAT (1H +95X s 7HFW NEG,)

-

r—




146 TABLE D3 (Cont'd,)
112 FORMAT ( 1HOW2X s 2HPT SX41HY 14X 8HVFELOCITY 77X 41 IHTEFMPFRATIIRF &% ¢ 7H
INEFNSITY 8X s I2HTHERM(PRESSe X 1O0HTOTePRESSe 6X 4 1HM 14XTHEPSII ON)
112 FORMAT (1H o+ 15+8(1XeEl14e7Y))
Q0Q0 FARMAT (1HO7HMEAN LP¢10Xs7H MEAN LP+ 10X« 7HMFAN LQs 10X «SHDELTA )Y
QAOR FNARMAT (1H 4F 15,843 (PXeF18548))
RFEAD INPUT TARPE Se 95¢ ININGIDONT K INKE KIFE
RFEAN INPHT TAPF S¢ OQQ86 7€ & JOF oK HF
N = ININ
Nz e/
18 WRITF NMTPIIT TAPF 6« 864 1IN
RFEAD INPHT TAPF 54 999
REAND INPUT TAPF S, 85, MM, (IM1e A S
W ITE OUTPUT TAPFE 64 964 MOy UUM1ae A ©
DFAND INPUT TARPF Se 85s OMFGN. OMEGl1e THFTO. THFTI
WERTITE OUTPIIT TAPF 66 974 OMFGOs OMFGle THFETNOe THETH
REAN INPHT TAPF T4 BRy CVe ~Te BFTs FMm
WRITE NITPUT TAPRPFE 64297« CVe CTe BETs FM
PDEAD INPHT TAPF S4195.CRY1 CRY?

pa = PSIF (OMFGO/CVYTHFETO/CT)
TF (PQ=1 NFE=4) 2001 420N 420072
2ANY DE| = Pa.PaRDQ /P,
[eXa T dal-Telale]
D2AND Dy = LOGCKF (] 4402
PANT CON = (THFTO/CTH)I*%2 5/PSL
ETA = (2RPF=14%CON
C17 = Ae*¥FTA/ (g ¥*FNM)
CHN = B04*%C17

PR = PRIF (OMFGI/ZCVMATHFTI/CT)
TF (PS=1¢NF=4) 2P0N442NNE420N05

PNAYL DE| = PC-DSXD" /P,
GO TO PON6
PANE Pe| = |LOAF (1 ,+P<)

H

PONA CON (THET1/CTY®RRDP S /P

ETA = (ARPF =14 % ON

c1 = ACHFETA/ (g %FM)

FHY = RO %01

COF = Be¥S/(Qg#RFT)

CP7 = CHO+COFRCRYZ¥THETC#THFETOXTHFETAN
c? = CHI4COF%¥CRY I *THETI*THFETI#THF T

WRITE OUTPHIT TAPF 64196

WRITE OTPHIT TARPF A4¢1974C14C1ZeCRY1IWCRYZ4C2C27
SOCT = [ORTF(CT)

CTR = CTRCTHCT

c1pm SARTF(C1I*S[ORTF(C17)

Ct Rm SARTFICRY 1) ¥SORTF(CRY?7)

c1 oM = SNRTF(CPHIRODRTF(CPT)

NFE = CLPM/CLnw

WRITF MTPUT TARPE A+ 9999

WRITFE OUTPUT TAPFE 64 9988« CLPMJCILRMICLOMDF

R = CT/(CVXRCV)

T = TOFF(THETO)

Vo= VOFF (OMEGO)

FP = FRRF(THETO. NMEGCNH)

WRITFE NTPUT TAPRPF A+ 98

v =z N

WRITF OUNTPUT TARPF 64 99, K +IMOGTFPs V
T = TOFF(THFT!)

Vo= VOFF(OMFECL)

FP = FPRF(THFT1e OMFGT)Y
w = 1 :
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TABLE D3 (Cont'd,)

WRITE OUTPUT TAPF 6Ge¢ 99, KoM, T, EP,.V
WRITFEF nuTPUIT TAPF 66 112

Ful = FOMF(THET] OMFGY)
TE (Fwy) 1.2
H = THETY

WRITFE MITPUT TAPF &« 1002
WM = QORTF (H)
WNEC = Ngl#(WM=OMFGT )

FAC = 1oe=SHHAHAHRH/T,

W2 = NeSH(FACH+SARTF (FACHFAC-48¢#H) )
GH = GNOF (Hew?)

HO = —FOMF (HeWP)/FTHF (HeW2)
VE = DEXRGO/HN

J =1

¥ = N,

we = 1

FN = N,

CAN = N

W= OMFGI+WNC

Fi. = Ny

F = FOOF(HeW)

GA TN (445)6y
IF (F=VUr)Y 43646

IF (W—M) 74748

J =2

G = GONF (HeWw)

IF (FN=F) 949,10
FN = F

HFN = H

WEN = W

TF (GN=G)Y 11412417
N = 6

HOKN = =

WEN = ow

FR = NgRIR(F+FL )

X = X=C| PM¥WNC/FR
[ =1] = F

v = W/RARTF (GAMPF (FPSF (HoaW) ) %H)
T = TOFF (H)y

vV = VOFF (w)

PH = FMmyy

P = DH¥R*T

F = FPaF (HW)

DY = PX(1e4F /3,
WRITF OUTPUT TAPEF 6+ 1120 KCoeXsVeTsRHeP«PTEMGE
W= wWwNE

K = 4

N TN 17

HRNEC = Da 1 R (THETI=-THFTO)
ot Wwp

= = vr

G GOOF (He W)

IF (GN=G) 14,415,415

1}

N6

HAN =

WEN = W

FR = N 8% (F+FL)
oL = 6

X = X=C| PME*WNC/FR

FM = W/SORTF (GAMPFE (FOSF (HeW) )#H)
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TABLE D3 (Cont'd,}

T = TOFF (H)

Vo= UNFEF (W)

D = FMyy

M = DH*RXT

o= FPRF (HyW)

DT = PX{(1e+F /g

WRITFE ONTPUT TARPF Fs 1134 KCaXeVeaTeRHIP ¢PT FMF
=1

W o= KC+1
fNOTO 16
T HNEC = NgNEX(THFET I -THFTN)
WRITTE NANITPOIT TADE A, 110Ny
Ho= THFT
W= AT (LY
cl = N
r =7
Y = N,
N = N
Rt = N
wr o= 1
1/ H = H=HNr
FAC = 1 q=CXHiH¥MEH /T,

Woom P g SR(FACHONDTE (FACHFAC Lo ®H) )
~ COANE (H gy
TE (AN=GY 17417419

17 N = 6
HON =
WO = oW

10 HA = «FOME(H W) /FTHE (He'w )
oz NEXG/HA

fOCTN (PReP1) 6L
21 IF (FN=F) 20,20.22

55 FN = F
HEN = H
WEK] = W
DA AR = ALER(GHA] )
X = Y4 OMEHNC /R
~ =
FM = W/SNRTF (GAMPE (FPSF (HelW) ) %#H)
T = TAEF (H)
Vo= \YOFEF
DH = Fm/v
0 = DH¥RX*T
E = FDCF (HeWw)
BT = PX¥(14+4F/3,)
WRITITE NUTPHIT TAPF 66 113, KCaXsVeaTeRHIPIPTEMF
Kr = w4

TE (H=THFTN) 274,272.16
2 WRITFE ONTPUT TAPF A. 100N
ANCTA M

27 TH = (THFTI=THFTO)*CL. OM/GN
Tw = (DMFGLI~OMFGO)*CL PM/FN
RAH = (CLDM/TH
RAW = 1 PM/TW

WRITE AITRPIIT TAPF A, 102

WRITE OITPUT TARPE 6e¢ 1036 FNeTWeRAW ¢ WFK ¢ HFN
WDTTE NITPUIT TADF £, 110D

WRITE OUTPUT TAPF 64 103, GNesTHeRAH . WGN s HGN
FMAR = SQRTF (LMO*IIMY )

TILP = Tw/rPwm
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TABLE D3 (Cont'd,)

TMLP = TLP/FMRA
WRITE OUTPIIT TAPF 6 « 907

WRTITE NAITPUT TAPF 6e« 99As TLP«TMLP
IF (IDNDNT=IN)Y 24 +248+25

D = 1N+

G TN 18

CALL FXIT

FND

;49
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TABLE D4
Case No. T. cm L T _
P LR cm LQ cm 5 I‘R/tw T-‘R/te
1 4 84x1073 |3, 74x107 7 71)(1010 6 -

- . . L 2Tx107 14 -
2 4. 8Ux107% |1.26x10% | 8.21x107 |5 93§18‘12 ?'iEX1O§ 5. 08x10_%
2 4.84x107° | 4.61x10% | 9.51x10% 5 0gx10 10 5'12X105 1.61x10_2
5 g'igxig-s X 3.76x100 | Blutxiom2e | 212600 | 2 Boutozs
.16x107% | 8.61x10% | 3.99x107° “1e |y : -
6 3.16x107* 1 3. 14x10% 4.28x107 5'§3§18-1a i‘eﬁXIOz 5.70x10_%
g l.47><10_2 2.11)(1011 l,59XlOle 9'26Xlo 18 1-52X10_4 1.80)(10_4
l. 47)(10_ 7_ O8xloa l. 69X1013 8: 74X10_ 18 6' (9)8Xio—4 l. 57)(]_0_4
1(9) l_l|.7><]_0_3 2.57)(108 l.94><lol° 7.60)(10_14 ].. 2X18_3 4.96)(10_3
11 §'§3X18-3 8.89x107 | 2.68x10°* | 2.01x10_1* 1'§9§109 N T
.37x10_% | 3.03%10 2.89x108 |1 12 ) . _
e 5.31x1075 | 1153102 S ha1os 1:§§§i8—1o 40107 | b.05x1072
E 2.68x10 3.92x10° 5 89x1018 | 4 BBx10"18 2.52)(10s l.28><lO_4
1 2.68x1073 | 1.33%107 | 6.30x10%° | 4.26%10" 1 7'3 o7 5.98x10_%
15 2.68)(]_0—: 4-94X104 7.43)(107 3-6l><lo 12 2- 5X106 ]..89)(10-3
16 1.07x107% | 2.52x102 | 1.60x10%8 | &.72x107 18 1'82X10—3 2. 98x10_7
lg 1.07x10°2 | 8.50x108 1.71x10%8 6.30XlO 16 - Jox10_~ 6.44X10_3
1 1.07x1072 | 3.14x10® | 1.99x10%° | 5.39x10" 4 3.32700. 2.0kx10_2
ég 4.83x107° 1.68x10° | 5.33x10%% | §.07x10" 1S 3‘92Xi88 6. 44x10_>
53 4.83x10_% | 5.77x102 2180510° | B.34k10715 | 3 350007 3.18x10 7
4.83x10_2 2.26x10% | 7.18x10°5 | 6.73x10"1* -ggx < | 1.01x10_Z
22 2.21x10°2 | 6.73x10° | 9.51x10%2 | 2.32x107 18 5‘44X1O—3 3.18x10_7
23 2.21x1072 | 2.23x107 | 1.02x10%* | 2.15%107 14 ?-O Xio_z l.61><10_3
2 2.21x10_; 8. 7ox10% | 1.23x10® | 1.79x10 12 -ugx 0_° | 5.09x10_2
2 8.29x10°2 | 4. 05x10%" | 2.22x10%® | 3.73x10] 18 3-48X;8-3 1.61x10_°
g? g'ggiig e é'BEXIOZ 2.39x10%2 | 3 48x107 @ } 101072 ;'ggiig's

. _ . 16x10 o B3x101° -1 : - . -
2% | 5ioma0ms | 3110008 | 5 0ud0nt | & 3a0nes | 2idoitoe | olhmdors
|3 | aiet | Siogee | 3G | PG | 2agio]

- 9Lx . 36x10 1.28x108 ) 1| o - . -
BT | hiS | TR it e

.72x10_ .18x10 1.64%x10%1 ’ 14 : - . -
33 | 1i7207% | 1063a0% | 202510 b aS-as | 3o |k oeae-e
3 16.30a07 1 7.2000 1 | 3. 360017 | 188210712 1 95a0e | 5 dg0ms

. X - . x10 3.63)(1013 l. )+ 10 l8 * -2 ' -
36 6.31x10"* | 9.39x10° i 10 L THX 3.62x10_ 1.73x10” 2
- . .38x10 1. 44x107 % | 1 1 g -2

37 2.77x1073 | 6.98%108 | 1.70x102 | 1.6 1o | 1-15X10_7 | 5.48x10
38 2.77x107% | 2. 36x10° | 1.89x10° 1.6%x10 9.80x107% | }.31x10”2
- : . J47x10” 13 1 1 -1

39 2 771075 | 8.91x10% | 2.16%10° 1 T3 13.31x107 7 | 1.36x10
40 1.20x10° % 2.72XlOlO 5 e 1.28x10 17 9.80x10”* 4, 31x10"*%
41 1.20x10°2 | 9. 45%107 L 75x10, 71 4.38x10 5.20x10°2 | 2.17x10_2
_ . 3.02x10 3.98x10°*5 | 1.65x107 ! -2

b2 1.20x10”% | 3.81x105 | 3.85x10° 1a | = 5x10_7 6.86x10_
43 4. 36x107% | 1.60x10%2 | 5.98x10'® 3.13x10772 | 5.20x107 7 | 2.17>10_
)'“'I' 4.36)(10-3 5.5]_)(109 6.51X1013 gégXlO 17 5.61)(1.0_ 2.47)(10 e
i -4 | 5 : .69x10 1.77x10_* | 7.81x10_%
5 L 36x10 2,17x107 8 11x10%° | 5.38x107 %5 | 5.61x10™ % | 2.47x1072




CASE NO,

EDDINGTON APPROXIMATION

I
III

Iv

V1
VII
VIII

IX

XI
XII
XIII

XIV

INVALID

VALID

X

X

Koo X e XM X KX
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TABLE D6
N To (°K) te ref (cm)
0.01 10% 7.4 x 10%°
10° 7.8 x 107
108 9.1 x 10%
1.0 10% 1.4 x 1023
10° 1.5 x 101°
108 1.7 x 107
10.0 104 1.3 x 1015
10° 1.4 x 1012
108 1.6 x 10°

153
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TABLE D

CASE NO. Grax.
I 0.102
II 0.143
I1I 0.165
v 0.304
\ 0.339
VI 0.357
VII 0.378
VIII 0.397
IX 0.410
X 0.400
X1 0.416
XII 0.k424
XIII 0.415
X1V 0.421
XV . 0.425




*1608
100
1C1
104

FORMA
FORMA

1HM)

TABLE D8

FORMAT (1544X+E6el)

T (3HNGC e ¢ IS eSX e 2HS= qF15e8B¢SXe2HA= F15¢8)
T (BHP T e ¢ 3X e SHOMEGA« ] OX e SHTHFTAS 10X s 4HFPSe e 11X e THG

102 FORMAT (1545(F15e7))

*1609

13

14

15

16

RFAD

wge =

F = 3
we
EN
WNC =
DO 1

X =1
wi =

H1
F1
S F
A =8
GPPR

cPt =
EM] =
PUINCH
PHNCH
L =1
PUNCH
cALL

HO =

E0 =

GPP2

GPO =
FMO o=
L = 0
PUINCH
CTONT]
END

[

SUBRO
NDIMEN
S =S5
A = A
R =8
col)
c 2y
c(2)
cta)
cC (=)
CL€e)
C(7)
cC(8)
T
cCe1o)
IF (A
wY =
=0 TO
wR =
1IF (A
WF =
GO TO
wWE =

1N"04s NoCC
Ne 156
L)
Ne 500
N
(WE-WB)Y/(EN=14e)
1=14N
-1
WB4+X®WNC
Wil¥wl
BeX(le~2e¥W1)/WI]
1 /W1 *%7
e ¥W1=10eRWIHW]LI~-1e
= Jle+be¥F1/3
16 +GPPI#GPPI /(1 e S5+44%F 1)
1e/SQPTF (GP1)
101¢ JoSeA
104

102« LoeWlaH1eF1.GP1FMI]
RHIN(S«A s Wl WD 4 CCH
((1 e=WOIRH(T7eXWO~1e)=B)Y/F
CEWORHOFHORHO
= 1et+ade*EOQ/3,
1e+GPP2XGPPZ2/ (1 e S+4¢%#F0)
SQRTF(WORWO/ (GPRO®HO )Y )

102¢ LeWOGHNGEN«GPNOFMO
NUF

UTINE RHIN(SSsAA D1 4NOLGRE)
SION CU10)YeF (1)
<
A

1e/S
= 2401
= =~10976.

P0188¢+1372+%A
—=(19040e+4704 ¢ %A

FT7EEC e 4+TOCL ¢ HA+P T4 o HAXA

= (2T720e433T2 ¢ HA+6T2 ¢ ¥ARA)
1P e+8B5P e #A+46B 4 ¥ ARALPB o HAXARA
(B2 e 4+CE ¢ ¥AH (1 ¢ +AVF+ T2 o RAXAXRNA4 G o %R )
(1e+AYXRL 45 %R
= —=(le4+A)%XR
~1e2857) 14413413
D1

-

(46 +SORTF (Qe~Te*A)Y) /T
—eB625) 18416417

(5e+SQRTF (Fe=16e%A) ) /8o

18
Ne 625

n

PRIMF+BXae 1
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17
18
4

11

172

GO TO 18

WF = D1+10e%*RE

WNC = (WE=-wWB)/10e

wT = WwR

F(1)y = €C(1)

DO 1 I = 2410

FUI)Y = C(IY+F (1 =-1)*WT
R = F((10)

IF(R) 64746

WwT = WT+WNC

IF (WE=WT) 2433

WNC = WNC/10,

GO TO 4

F1)y = C(1)

NO 5 1 = 2410

FCIY = CUIY+F (1 =1)RWT
1IF (RXF(10)) 8e¢749

R = E(10)

GO TO 6

NO = wT

RE TURN

FP = 0es0

PO 10 1 = 149

X = (n-1

FP = FP+X*C (1 )*WT**(3-1)
DX = E(10)Y/FP

wWT = WT-DX

1F (ARSF(DX)=RFE) 747411
F(l1y = (1)

PO 12 1 = 2410

F(I) = C(I)+F (I=-1)*WT
GO TO 8

FEND

TABLE D8 (Cont'd.)
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